Pseudorandom Generators in Proof Complexity

- **Def.** A generator $G_n : \{0, 1\}^n \to \{0, 1\}^m$ is *hard* in *P* if, for any $\vec{b} \in \{0, 1\}^m$, no proof $\Pi \in P$ exists showing $\vec{b} \notin \text{Im}(G_n)$ efficiently.
- Prop. The Tseitin generator is hard in resolution.

Def. $J_i(A) := \{j \in [n] : a_{ij} = 1\}$ and $X_i(A) := \{x_j : j \in J_i(A)\}$ describe the 1-columns of row *i*.

Def.

$$\begin{cases} g_1(\vec{x}) = 1 \\ \vdots & \text{Vars}(g_i) \subseteq X_i(A) \\ g_m(\vec{x}) = 1 \end{cases}$$
(1)

is *Equation 1*. Refuting it shows $(1, ..., 1) \notin \text{Im}(G_n)$.

- **Def.** Fix $i \in [m]$. Let f be s.t. $Vars(f) \subseteq X_i(A)$. Then y_f is the *extension variable* of f.
- **Def.** Vars(A) := $\{y_f : \exists i \in [m] : Vars(f) \subseteq X_i(A)\}$
- **Def.** $C = y_{f_1}^{\varepsilon_1} \lor \cdots \lor y_{f_k}^{\varepsilon_k} \implies ||C|| := f_1^{\varepsilon_1} \lor \cdots \lor f_k^{\varepsilon_k}$
- **Def.** Fix *A*. $\tau(A, G_n)$ denotes the collection of clauses $C = y_{f_1}^{\varepsilon_1} \vee \cdots \vee y_{f_k}^{\varepsilon_k}$ for which

$$\operatorname{Vars}(f_i) \subseteq X_i(A)$$
 $i = 1, ..., k$ and $g_i \models ||C||$

We call $\tau(A, G_n)$ the *functional encoding* of Equation 1.

- **Prop.** $\tau(A, G_n)$ is satisfiable \iff Equation 1 has a solution \vec{x} .
- **Def.** For $I \subseteq [m]$, $\partial_A(I)$ (called the *boundary* of *I*) denote all columns which, when restricted to *I*, contain one "1." *A* is called an (r, s, c)-expander if $|J_i(A)| \le s$ and, for all choices *I* as above, $(|I| \le r \implies |\partial_A(I)| \ge c|I|$.
- **Def.** A function g_i is called ℓ -*robust* if every ρ such that $g_i(\rho) \in \{0, 1\}$ satisfies $|\rho| \ge \ell$.
- **Def.** For a clause *C* in Vars(*A*), $\mu(C)$ is the size of a minimal $I \subseteq [m]$ such that:

(a)
$$\forall y_f^{\varepsilon} \in C \ \exists i \in I : \operatorname{Vars}(f) \subseteq X_i(A)$$

(b) $\{ g_i \mid i \in I \} \models ||C||$

Claim 1. For a clause *C* with $\frac{r}{2} < \mu(C) \le r$, $w(C) > \frac{r(c+\ell-s)}{2\ell}$.

Claim 2. Any resolution refutation Π of τ contains a clause *C* with $\frac{r}{2} < \mu(C) \le r$.

Main Theorem. Let $A \in M_{m \times n}(\{0, 1\})$ be an (r, s, c)-expander, and let g_i be ℓ -robust for i = 1, ..., m. Let $c + \ell \ge s + 1$. Then

$$w_{\operatorname{Res}}(\tau(A,G_n)) > \frac{r(c+\ell-s)}{2\ell}$$