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3 vector spaces

I Vector Spaces

axioms

In previous calculus courses, we’ve considered the set of tuples ⟨a1, ..., an⟩, where,
in particular, ai ∈ R. These are examples of vector spaces, the construction which
we will primarily study in this course.

Define a vector space V over the field F to be an abelian group under the operation
+ and an identity element 0V , which one calls the zero vector. Members of V are
called vectors. Finally, V is equipped with scalar multiplication by members of F,
and satisfy the following axioms:

1. 1Fv = v ∀v ∈ V 3. (α + β)v = αv + βv

2. α(βv) = (αβ)v ∀v ∈ V α, β ∈ F 4. α(u + v) = αu + αv ∀α ∈ F u, v ∈ V

Recall also the properties of abelian groups from Math 235, which apply to V :

u(vw) = (uv)w v + 0V = v ∃(−v) s.t. v + (−v) = 0V uv = vu

for all u, v, w ∈ V .

Some formal consequences of the vector space axioms: Proposition 1.1

0Fv = 0V for all v ∈ V − 1Fv = −v α0V = 0V

Proofs.(1): 0Fv = (0F + 0F)v = 0Fv + 0Fv =⇒ 0V = 0Fv

(2): −1Fv + v = (−1F + 1F)v = 0Fv = 0V

(3): α0V = α(0V + 0V ) =⇒ α0V = 0V

Examples: Most of the pedagogical examples of vector spaces we’ll see do not
bear much resemblance to the Rn,

〈
x, y, z

〉
-like form we are familiar with:

1. The set of real, continuous functions, denoted C[R] := {f : R → R}, is a
vector space over R.

2. F[t], the set of polynomials with coefficients in F, where addition and scalar
multiplication are defined as usual, is a vector space over F.
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further constructions

Define a product, sometimes called the direct sum, of two vector spaces U, V over
the same field F to be the Cartesian product U × V equipped with the following:

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2) and λ(u, v) = (λu, λv)

∀u1, u2 ∈ U, v1, v2 ∈ V , λ ∈ F. One notates this as U ⊕ V . This is itself a vector
space. Note that the coordinate-vise addition and scalar multiplication are definedA good exercise to prove.

as in the original vector spaces.

For example, consider F2 over the field F. One can conceptualize F as a vector
space over F, and thus the direct product of F with itself is a vector space.

Subspaces

We have constructed from a vector space one larger than it. Here is one smaller:
define a subspace to be a set W ⊆ V satisfying the following conditions

0V ∈ W u + v ∈ W ∀u, v ∈ W αu ∈ W ∀u ∈ W, α ∈ F

There a few equivalent characterizations of subspaces: W ⊆ V is a vector space;
or, W ⊆ V is non-empty and satisfies the latter two conditions from above.

If W were non-empty, then
choose u ∈ W . Then 0Fu ∈
W , so 0V ∈ W as required.

Examples: Consider Fn over the field F. This is a vector space. The following are
subspaces of Fn :

1. {(0, x2, ..., xn) ∈ Fn : xi ∈ F}.

2. W = {(x1, ..., xn) ∈ Fn : x1 + 2x2 = 0)}. One can choose x3, ..., xn all 0, and
since x1 = x2 = 0 satisfy x1 + 2x2 = 0, one sees that 0V ∈ W . If x1 + 2x2 = 0,
then λx1 + 2λx2 = 0 as well, so W is closed under scalar multiplication.
Lastly, if x1 + 2x2 = 0 and x′1 + 2x′2 = 0, then (x1 + x′1) + 2(x2 + x′2) = 0, so W
is closed under addition.

3. Generally, though it is not a fact we can prove now, W ⊆ Fn :=
(x1, ..., xn) ∈ Fn s.t.


a11x1 + a12x2 + ... + a1nxn = 0

a21x1 + a22x2 + ... + a2nxn = 0
...

am1x1 + am2x2 + ... + amnxn = 0


i.e. a subset of Fn where a system of at least one linear equation is homoge-
neous. As a counter-example to this construction, see that {(x1, ..., xn) ∈ Fn :
x1 + x2 = 1} is not a subspace of Fn (it violates all 3 conditions).
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4. Let F[t]n denote the space of polynomials whose degree is at most n ∈ N.
Then F[t]n ⊆ F[t] is a subspace. However, the set of polynomials whose
degree is exactly n, for some positive n ∈ N, is not a subspace. The following
are further subspaces of F[t]n, where p′′(t) is defined as usual (notice the
similarity to 3.).

(a) {p(t) ∈ F[t]n : p(1) = 0} or even {p(t) ∈ F[t]n : p(α) = 0 with α ∈ F}
(b) {p(t) ∈ F[t]n : p′′(t) + 2p′(t) − p(t) = 0}

5. For C[R], which, as noted above, is a vector space, the following are sub-
spaces:

(a) {f ∈ C[R] : f (π) + 7f (
√

2) = 0}
(b) {f ∈ C[R] differentiable everywhere}

(c)

f ∈ C[R] :
1∫

0
f dx = 0

. The proof of this follows from linearity of the

integral (Math 255). In truth, the bounds for the integral can be
arbitrary, though see this integral cannot be set arbitrarily.

If W1, W2 are subspaces of some common v.s. over the field F, then Proposition 1.2

W1 + W2 := {w1 + w2 : w1 ∈ W1, w2 ∈ W2} and W1 ∩W2

are both subspaces. The proofs for these are left to the reader.

linear combinations

Define a linear combination of vectors v1, ..., vn ∈ V , where V is a vector space

over F, to be
n∑
i=1

aivi , where ai ∈ F. So long as one ai is non-zero, one calls this a

non-trivial lc. Otherwise (i.e. all ai = 0), we have a trivial lc.

When we deal with a possibly infinite set of vectors, S ⊆ V , we will only take
finite linear combinations, for a subset {v1, ..., vn} ⊆ S. Never will we compute
infinite sums in this course.

Define the span of S ⊆ V to be the set of all possible linear combinations of S,
{a1v1 + ... + anvn : ai ∈ F, vi ∈ S}. By convention, we say that Span(�) = 0V .

Example: Let S := {(1,0,−1), (0,1,−1), (1,1,−2)} ⊆ R3. Then 0R3 = (0,0,0) =
0(1,0,−1) + 0(0,1,−1) + 0(1,1,−2) is a trivial linear combination. However, we
can get to 0 non-trivially: (1, 0,−1) + (0, 1,−1) − (1, 1,−2) = 0.

What about Span(S)? This is the set {a(1,0,−1) + b(0,1,−1) + c(1,1,−2)} = {(a +
c, b+ c,−a− b−2c)}. Clearly this is a subset of {(a, b, c) : a+ b+ c = 0}, since, indeed,
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a + c + b + c − a − b − 2c = 0. The converse is also true: suppose (x, y, z) is such that
x+ y + z = 0. Then z = −x− y, and one writes (x, y,−x− y) = x(1, 0,−1) + y(0, 1,−1).
It follows that Span(S) = {(x, y, z) : x + y + z = 0}.

Let V be a v.s. over a field F, and S be some subspace of it. Then Span(S) isProposition 1.3

a subspace of V containing S, and furthermore is the smallest such subspace
containing S.

Proof.
Adding and scalar multiplying a linear combination of vectors produces a fur-
ther linear combination, so Span(S) is closed under these operations. Further-
more, 0V ∈ Span(S) by taking a trivial combination of vectors =⇒ Span(S)
is a subspace.

If U ⊇ S is a subspace, then U is closed under addition and scalar multiplica-
tion, so it contains all linear combinations of S, i.e. U ⊆ Span(S)

For S ⊆ V , v ∈ V , we have that v ∈ Span(S) ⇐⇒ Span(S ∪ {v}) = Span(S).Proposition 1.4

Proof. ( =⇒ ) If v ∈ Span(S), then v is some linear combination of vectors in S, so
v = a1v1+...+anvn. Let u ∈ Span(S∪{v}). Then u = a′1v

′
1+...+a′mv

′
m+av, where

a may be 0, and v′i ∈ S. One rewrites u = a′1v
′
1 + ...+ a′mv

′
m + a(a1v1 + ...+ anvn)

from above. Thus, Span(S ∪{v}) ⊆ Span(S). Trivially, Span(S) ⊆ Span(S ∪{v}),
so Span(S) = Span(S ∪ {v}).
( ⇐= ) Assume Span(S) = Span(S ∪ {v}). Clearly, v ∈ Span(S ∪ {v}), so v ∈
Span(S) as well.

For a v.s. over a field F, call S ⊆ V a spanning set of V if Span(S) = V . One calls a
spanning set minimal if no proper subset of S is spanning, i.e. Span(S \ v) , V for
all v ∈ V .

Example: For S := {(1,0,−1), (0,1,−1), (1,1,−2)}, we have from Proposition 1.4
that Span(S) = Span({(1, 0,−1), (0, 1,−1)}), as (1, 1,−2) ∈ Span({(1, 0,−1), (0, 1,−1)}).

Thus, it follows that S is not a minimal spanning set over itself.

For the v.s. Fn over F, define the standard spanning set:

Stn := {(1, 0, 0, ..., 0
n−1 times

), (0, 1, 0, ..., 0), ..., (0, ..., 0, 0, 1)}

This is indeed spanning for Fn, and is minimal.
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linear ( in )dependence

Let V be a v.s. and S ⊆ V a subspace. S is called linearly dependent if there
exists a non-trivial linear combination equal to 0V . Otherwise S is called linearly
independent.

Examples:

1. The empty set, by vacuous implication, is linearly independent.

2. For v ∈ V , v is linearly dependent ⇐⇒ v = 0V

3. S := {(1, 0,−1), (0, 1,−1), (1, 1,−2)} is linearly dependent

4. S ⊆ F3 = {(1,0,−1), (0,1,−1), (0,0, ,1)} is linearly dependent. We argue by
contradiction: let (0, 0, 0) = a(1, 0,−1) + b(0, 1,−1) + c(0, 0, 1) = (a, b, c− a− b).
Then a = b = 0 by necessity, and it follows that c − a − b = c = 0. Thus, only
a trivial linear combination equals the zero vector.

5. Stn ⊆ Fn is linearly independent

Let V be a v.s. over F, S ⊆ V (possibly infinite). Then: Proposition 1.5

(a) S is linearly dependent ⇐⇒ there exists a finite S0 ⊆ S which is linearly
dependent

(b) S is linearly independent ⇐⇒ all finite S0 ⊆ S are linearly independent

Proof.Note that (b) is simply the negation of (a), so only (a) requires a proof.

( =⇒ ) Suppose S is linearly dependent. Then a1v1 + ... + anvn = 0V , where,
wlog, we assume that ai , 0F. The set {v1, ..., vn} ⊆ S is clearly linearly
dependent.

(⇐= ) If S0 ⊆ S is linearly dependent, then clearly S is too

For S ⊆ V over F, we have Proposition 1.6

(a) S is linearly dependent ⇐⇒ there exists v ∈ S with v ∈ Span{S \ v}

(b) S is linearly independent ⇐⇒ for all v ∈ S, v < Span{S \ v}

Proof.Once again, only (a) requires proof.

( =⇒ ) Let S be linearly dependent. Then a1v1 + ...+ anvn = 0V , and wlog we
assume all ai are non-zero. Since F is a field, we may write v1 = −a−1

1 a2v2 −
... − a−1

1 anvn. Thus, v1 ∈ Span{S \ v1}, and we are done.

https://en.wikipedia.org/wiki/Vacuous_truth
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(⇐= ) Suppose v ∈ S is such that v ∈ Span(S \ v). Then v = a1v1 + ... + anvn,
where vi ∈ S \ v. It follows that 0V = a1v1 + ... + anvn − v. As −1 , 0, this is
non-trivial, and we are done.

Corollary
S ⊆ V is linearly independent ⇐⇒ S is a minimal spanning set for Span(S)Clearly, Span(S) = Span(S).

However, v ∈ S =⇒
v < Span(S \ v). We know
v ∈ Span(S), so Span(S) ,
Span(S \ v).

For a vector space V over F, S ⊆ V is called maximally independent if S is linearly
independent and there does not exist v ∈ V \S s.t. S∪{v} is linearly independent.
In other words, S is independent, and adding any new vectors will break this
independence.

If S is maximally independent, then S is spanning for V .Proposition 1.7

Proof. Let S be maximally independent. Then for any v ∈ V \ S, the set S ∪ {v}
is linearly dependent, i.e. av + a1v1 + ... + anvn = 0V for all non-zero ai . In
particular, a , 0, or else we would yield a non-trivial linear combination for
only vectors in S, which violates our independence condition.

Thus, write v = −a−1a1v1 − ... − a−1anvn, and conclude that v ∈ Span(S). Then
V ⊆ Span(S). Clearly, Span(S) ⊆ V , so we conclude that Span(S) = V .

bases

1.1 Characterization of a Basis
Let V be a v.s. over F and S ⊆ V . The following are then equivalent:

1. S is a minimal spanning set for V

2. S is linearly independent and spanning for V

3. S is maximally independent

4. Every v ∈ V is equal to a unique combination of vectors in S

Proofs. (1) =⇒ (2) Let S ⊆ V be a minimal spanning set for V . Then, especially, S is
a minimal spanning set for Span(S), and by the corollary above, S is linearly
independent.

(3) =⇒ (1) Let S ⊆ V be maximally independent. By proposition 1.7, S is
spanning for V . By the corollary, S is also minimally spanning for Span(S).
Combining, we see that S is minimally spanning for V .

(2) =⇒ (4) Let S ⊆ V be linearly independent and spanning for V . Then,
clearly, l ∈ V ∈ Span(S) means that it can be written as a linear combination
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of vectors in S. We need this combination to be unique: let a1v1 + ...+ anvn = l
and b1v1 + ...+bnvn = l, where S = {vi}1≤i≤n One uses the same vectors, noting
that some coefficients may be 0, as needed.

a1v1 + ...+ anvn = b1v1 + ...+ bnvn =⇒ a1v1 + ...+ anvn − b1v1 − ...− bmvm = 0.
We can thus combine ai − bi = ci , and write c1v1 + ... + cnvn = 0. Since S is
linearly independent, we require that all ci = 0, i.e. ai = bi∀i.

(4) =⇒ (2) This result is immediate, as V ⊆ Span(S), Span(S) ⊆ V =⇒
Span(S) = V . Since all vectors in v have a unique representation, consider
v = 0V . A trivial combination produces the zero vector, and by uniqueness
this must be the only such combination, and we conclude that S is linearly
independent.

If any of the above statements hold, we call S a basis for V .

With respect to (4), the unique combination is called a unique representation of v
in S. The associated coefficients are called the Fourier coefficients of v in S

Examples:

1. Consider Stn, the standard basis for Fn (notice the terminology). This is, of
course, a basis

2. F[t]n, the space of polynomials with degree at most n, has a basis {1, t, t2, ..., tn}.

3. In F3, {1, 0,−1), (0, 1,−2), (0, 0, 1)} is a basis.

4. The standard basis of F[t], the space of all polynomials, is {1, t, t2, ...} = {tn :
n ∈ N} . One checks linear independence of this space by considering all Note: in this couse, 0 ∈ N
finite subsets (remember, we do not take infinite sums).

5. Define F[[t]] to be the set of all power series, i.e.
{ ∑
n∈F

ant
n : an ∈ F

}
. In the

bullet above, we consider the space of polynomials, i.e. formal power series
with finitely many non-zero terms. Not so for F[[t]], in generality. We ask:
does this have a basis?

1.2 Every vector space has a basis

Proof attempt.Since V may be infinite, we will have to rely on some non-rigorous notions
to prove this in any short form. Suppose V is a vector space over F, and let
S0 = � be a trivial, independent subspace. If S0 is maximally independent,
then we are done. Otherwise, there exists v1 ∈ V such that S1 := S0 ∪ {v1}
is also independent. If S1 is maximal, then we are done. Otherwise, choose
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v2 ∈ V , define S2 := S1 ∪ {v2}, and so on and so on. This last notion (”and so
on and so on”) is problematic when V is not finite. To resolve this, we’ll need
to learn and understand Zorn’s Lemma

Zorn’s Lemma

Let X be some ambient set and I be a collection of subsets of X. In other words,The definition of ambient
sets is not necessary to un-
derstand Zorn’s lemma, but
you can read about it here

I ⊆ P (X), the powerset of X. Call a set S ∈ I an inclusion-maximal element if ∄
any strict superset S ′ ⊋ S such that S ′ ∈ I . Call a collection of sets C ⊆ P (X) a
chain if, for any two sets A, B ∈ C, one has A ⊆ B or B ⊆ A.

To demonstrate these definitions, let X := N and I := {�, {0}, {1, 2}, {1, 2, 3}} ⊆ P .

Both {0} and {1,2,3} are inclusion-maximal in I : adding any element to either
of these sets will land you outside of I . C1 = {�, {1,2}, {1,2,3}} is a chain, but
C2 = {�, {1, 2}, {0}} is not a chain.

�

{0} {1, 2}

{1, 2, 3}

where↗means ⊆

Lastly, define an upper bound of J ⊆ P (X) to be a set U ⊆ X such that U ⊇ J for
all sets J ∈ J .

1.3 Zorn’s Lemma
Let X be a set, I ⊆ P (X) non-empty. If every chain C ⊆ I has an upper
bound in I , then I has a maximal element.

The proof for this is statement beyond this course (see Math 488).

Let’s revisit the statement that every vector space has a basis, now equipped with
Zorn’s lemma:

Proof. Let I be the collection of linearly independent subspaces in V . This is non-
empty, since at least the empty set is linearly independent. If one can show
that I has a maximal element, in the sense of Zorn’s lemma, then this element
is also maximally independent.

Consider a chain C ⊆ I , and let S := ∪C be the union of all sets in C.
This is clearly an upper bound of C, so we want to show that it is linearly
independent. However, S may be infinite, so consider an arbitrary subset
{v1, ..., vn} ⊆ S.

https://en.wikipedia.org/wiki/Ambient_space_(mathematics)
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Let Si ∈ C be some set that contains vi , from the set described above. Since
C is a chain, for any i, j, we have Si ⊆ Sj or Sj ⊆ Si , so wlog we can order
these sets as follows:

S1 ⊆ S2 ⊆ ... ⊆ Sn

Thus, v1, ..., vn ∈ Sn, and since Sn ∈ C ⊆ I (recall the definition of I ), Sn is
linearly independent. Thus, {v1, ..., vn} ⊆ Sn is linearly independent =⇒ S is
linearly independent =⇒ S ∈ I is an upper-bound of I .

Zorn’s lemma is satisfied, so I has a maximal element, and we are done.

Steinitz Substitution Lemma

1.4 Cardinality of Bases
For a vector space V over F, any two bases have the same cardinality.

We’ll require another lemma to prove this statement:

1.5 Steinitz Substitution Lemma
Let V be a vector space over F. Let Y ⊆ V be a finite, linearly independent
set and Z ⊆ V be a finite spanning set. Then the following hold:

(a) |Y | ≤ |Z |

(b) ∃ Z ′ ⊆ Z such that Y ∪ Z ′ still spans V , where |Z ′ | = |Z | − |Y |

Proof TBD

Now we’ll show theorem 1.4:

Proof.Let Y and Z be two finite bases for V . Then Y is linearly independent and Z
is spanning. Thus, |Y | ≤ |Z | be Steinitz. However, Y is also spanning, and Z is
linearly independent, so |Z | ≤ |Y | =⇒ |Y | = |Z |.

For a vector space V over F, define the dimension of V , denoted by dim(V ), to be
the cardinality of its (i.e. any) basis. We call V a finite dimensional vector space if
dim(V ) is a natural number, otherwise its infinite dimensional.

Let V have dim(V ) = n. Then the following hold by Steinitz: Proposition 1.8

(a) For every linearly independent set I ⊆ V , |I | ≤ n. If |I | = n, then I is a basis.

(b) For every spanning set S ⊆ V , |S | ≥ n. If |S | = n, then S is a basis.

(c) Every linearly independent set I can be completed to a basis for V , i.e. ∃ a
basis B for V which contains I

Proofs.
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(a) Since a basis B is spanning, one has |I | ≤ |B| = n

(b) Since a basis B is independent, |B| ≤ |S |, i.e. |S | ≥ n

(c) Let I be independent and B be a basis. Then ∃ B′ ⊆ B with I ∪ B′ spanning.
I ∪ B′ is also independent: we know that |I ∪ B′ | ≥ n. However, |I ∪ B′ | ≤
|I | + |B′ | = |B| = n. Thus, |I ∪ B′ | = n. It follows that this set is minimally
spanning, since |I ∪ B′ | = n − 1 is a contradiction of (b). =⇒ |I + B′ | is a
basis.

1.6 Monotonicity of Dimension
Let V be a finite dimensional vector space. Then for any subspace W ⊆ V ,
dim(W ) ≤ dim(V ) and dim(W ) = dim(V ) ⇐⇒ W = V .

Proof. Let B be a basis for W . Since B is independent and W ⊆ V , |B| ≤ dim(V ) by
proposition 1.8, so dim(W ) ≤ dim(V ).

( =⇒ ) If |B| = dim(V ), then B is a basis for V by 1.8, so Span(B) = V , or
W = V . The (⇐= ) direction is trivial.



13 linear transformations

II Linear Transformations
axioms and initial properties

Let V ,W be vector spaces over F. One calls a mapping T : V → W a linear
transformation if it preserves vector space structure, i.e.

1. T (v1 + v2) = T (v1) + T (v2) ∀v1, v2 ∈ V

2. T (αv) = αT (v) ∀v ∈ V , α ∈ F

Immediately, we have that T (0V ) = 0W and T (−v) = −T (v).

Examples:

1. Consider T : F2 → F2 : T (a1, a2) = (a1 + 2a2, a1). This is a linear trans-
formation. Checking the axioms: T (a1 + b1, a2 + b2) = (a1 + b1 + 2(a2 +
b2), a1 + b1) = (a1 + 2a2 + b1 + 2b2, a1 + b1) = T (a1, a2) + T (b1, b2). Also,
T (αa1, αa2) = (αa1 + 2αa2, αa1) = α(a1 + 2a2, a1) = αT (a1, a2).

2. Let θ be an angle, and T : R2 → R2 be the rotation of a vector by θ. This is
a linear transformation.

3. T : R2 → R2, the reflection transformation defined by T (a1, a2) = T (a1,−a2)

4. The transpose Mn(F)→ Mn(F) : A→ AT

5. D, the derivative of finite polynomials.

2.1 Linear transformations are completely determined
by values on a basis
Let B := v1, ..., vn be a basis for a vector space V . Let W be a vector space
over a common field F, and w1, ..., wn ∈ W . Then there exists a unique linear
transformation T : V → W which sends T (vi) = wi ∀i ∈ [1, n].

Proof.Existence: Let v ∈ V , B ⊆ V a basis for V , and consider some transformation
T (v). We write v = a1v1 + ...anvn, vi ∈ B, the unique representation of v in B.
Now, define T (v) = a1w1 + ... + anwn for fixed wi ∈ W . This will indeed send
T (vi) = wi as desired. To show that T is linear, one checks the axioms:

For u, v ∈ V , let v = a1v1 + ... + anvn and u = b1v1 + ... + bnvn be the unique
representations of u, v in B. Then u + v = (a1 + b1)v1 + ... + (an + bn)vn, so
T (u+ v) = (a1 + b1)w1 + ...+ (an + bn)wn = a1w1 + ...+ anwn + b1w1 + ...+ bnwn =
T (u) + T (v).
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T (αv) = αT (v) follows immediately from its definition.

Uniqueness: Suppose T1, T2 are both such that T1(vi) = wi = T2(vi) for all
i. One shows that T1(v) = T2(v) ∀v ∈ V . Let v = a1v1 + ... + anvn be the
unique representation of v in B. By linearity, T (v) = a1T (v1) + ... + anT (vn) =
a1w1 + ... + anwn for both T1 and T2. Since ai and wi are all fixed, we see that
T1(v) = T2(v).

2.2 Extension of Functions on Basis
Let V ,W be vector spaces, possibly infinite, over F, and let β be a basis for V .
Every function T : β → W can be extended to a unique linear transformation
T̂ : V → W .

Proof. This is essentially the infinite case of theorem 2.1:

Existence: Let T : β → γ be (any) function between the bases of V and W . For
v ∈ V , let v = a1v1 + ... + anvn be its unique representation in β, where vi ∈ β.
Define the function

T̂ (v) = a1T (v1) + ... + anT (vn)

We’ll show that this is linear. Let x, y ∈ V . Without loss of generality, we
can write x = a1v1 + ... + amvm and y = b1v1 + ... + bmvm as their unique
representations, where ai , bi may be zero. We thus have

T̂ (x + y) = (a1 + b1)T (v1) + ... + (am + bm)T (vm)

= a1T (v1) + b1T (v1) + ... + amT (vm) + bmT (vm)

= T̂ (x) + T̂ (y)

T̂ (αx) = αa1T (v1) + ... + αamT (vm)

= α[a1T (v1) + ... + amT (vm)] = αT̂ (x)

Uniqueness: Let T̂ be as defined, and let T̃ : V → W be another transformation
which also sends β → γ according to T : β → γ . Fix v ∈ V , and let a1v1 + ... +
anvn be its unique representation in β.

T̂ (v) = a1T (v1) + ... + anT (vn) = a1T̃ (v1) + ... + anT̃ (vn) = T̃ (a1v1 + ... + anvn) = T̃ (v)

T̂ is indeed an extension of T .
See that T̂ (vi ) = T (vi ), since
vi is its own representation
in β.



15 linear transformations

isomorphisms

Define an isomorphism T : V → W , for two vector space V ,W over F, to be a
linear transformation which admits a linear inverse.

If there exists an isomorphism between V and W , one says that V and W are
isomorphic (to eachother). Write V � W .

T : V → W is an isomorphism ⇐⇒ T is linear and bijective. Proposition 2.1

Proof.
This may seem trivial, and the ( =⇒ ) direction is. However, we need to show
that, for T linear and bijective, its inverse is linear:

We know T −1 exists, since T is bijective. Let w1, w2 ∈ W and a1, a2 ∈ F:

T −1(a1w1 + a2w2) = T −1[a1T (T −1(w1)) + a2T (T −1(w2))]

= T −1[T (a1T
−1(w1)) + T (a2T

−1(w2))]

= T −1[T (a1T
−1(w1) + a2T

−1(w2))]

= a1T
−1(w1) + a2T

−1(w2)

2.3 Freeness of Vector Spaces
All bijections from β → γ can be extended to a unique isomorphism between
V and W . This follows from Theorem 2.2.

2.4 Isomorphism with Same Dimension
For n ∈ N, a vector space V over F with dim(V ) = n is isomorphic to Fn.
In particular, all n-dimensional vector spaces over F are isomorphic to
eachother.

Proof.Fix a basis B := {v1, ..., vn} for V . Let V → Fn be the unique transformation
which sends T (vi) = ei , where ei = {0, ...,0,1,0, ...,0}, with 1 in the ith posi-
tion.

T is injective: let T (x) = T (y) for x, y ∈ V , and write x = a1v1 + ... + anvn,
y = b1v1 + ... + bnvn, the unique representations of x, y in B.

Then T (x) = T (y) =⇒ a1e1 + ... + anen = b1e1 + ... + bnen, since T sends
vi → ei . By uniqueness of representation in a basis, one has ai = bi .

T is surjective: let w ∈ Fn. Then let w = a1e1 + ... + anen be its unique repre-
sentation in Stn. Then T (a1v1 + ... + anvn) = w.
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Thus, V � Fn, and so all n-dim vector spaces are isomorphic to eachother.

Recall that {ei }i≤n is the stan-
dard basis, Stn, of Fn.

For a linear transformation T : V → W , define its image, notated Im(T ) or T (V ),
to be the set {T (v) : v ∈ V }. Similarly, define its kernel, notated ker(T ) or T −1(0W ),
to be {v ∈ V : T (v) = 0W }.

ker(T ) and Im(T ) are subspaces of V and W , respectively.Proposition 2.2

Proof. For ker(T ) : Let v1, v2 ∈ ker(T ) and a1, a2 ∈ F. Then T (a1v1 +a2v2) = a1T (v1)+
a2T (v2) = a10W + a20W = 0W , so a1v1 + a2v2 ∈ ker(T ).

For Im(T ) : Let w1, w2 ∈ Im(T ). Then wi = T (vi) for some vi ∈ V , so a1w1 +
a2w2 = a1T (v1) + a2T (v2) = T (a1v1 + a2v2), so a1w1 + a2w2 ∈ Im(T ).

Let T : V → W be a linear transformation. Let B ⊆ V be a basis for V . Then T (B)Proposition 2.3

spans Im(T ). In particular, T is surjective ⇐⇒ T (B) spans W .

Proof. Let w ∈ Im(T ), so w = T (v) for some v ∈ V . Write v = a1v1 + ... + anvn to be
the unique representation of v in B. Then w = T (v) = a1T (v1) + ...+ anT (vn) ∈
Span({T (v1), ..., T (vn)}), so T (B) spans Im(T )

If T is surjective, then Im(T ) = W , and vice-versa.

Let T : V → W be a linear transformation. Then the following are equivalent:Proposition 2.4

1. T is injective

2. ker(T ) = {0V }

3. T (B) is independent for all bases B ⊆ V

4. T (B) is independent for some basis B ⊆ V

Proof. (1) ⇐⇒ (2). =⇒ direction trivial. (⇐= ) Let ker(T ) = {0V }, and T (x) = T (y)
for some x, y ∈ V . Then T (x) − T (y) = 0W = T (x − y), so x − y ∈ ker(T ). But
then 0V = x − y, so x = y.

(2) =⇒ (3) Fix a basis B := {v1, ..., vn} ⊆ V . To show that T (B) is linearly
independent, take a combination a1w1 + ... + anwn, where T (vi) = wi . These
wi are distinct, since T is injective by (2) =⇒ (1).

Suppose a1w1 + ...+anwn = 0. Then T (a1v1 + ...+anvn) = 0, so a1v1 + ...+anvn ∈
ker(T ). Thus, by (2), a1v1 + ... + anvn = 0, but vi ∈ B are linearly independent,
so ai = 0.

(3) =⇒ (4) trivial.
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(4) =⇒ (2) Fix B ⊆ V and let T (B) be linearly independent. Suppose T (v) = 0,
and write v = a1v1 + ... + anvn for vi ∈ B. Then a1T (v1) + ... + anT (vn) = 0, but
T (B) is linearly independent, so ai = 0

If V and W are isomorphic, they have the same dimension. Proposition 2.5

Proof.This follows directly from propositions 2.3 and 2.4: if V and W are isomor-
phic, then ∃T : V → W which is bijective. Let B be a basis for V . Then T
surjective =⇒ T (B) is spanning for W by 2.3. T injective =⇒ T (B) indepen-
dent by 2.4. Thus, T (B) is a basis for W . But T is a bijection, so |T (B)| = |B|,
and we conclude that dim(V ) = dim(W ).

If T : V → W is an injective linear transformation, then dim(W ) ≥ dim(V ). This Proposition 2.6

is something along the lines of a pigeonhole principle for vector spaces.

Proof.Since Im(T ) ⊆ W , we know dim(Im(T )) ≤ dim(W ). Thus, we show that
dim(Im(T )) = dim(V ). But since T is injective, it is an extension of T̂ : V →
Im(T ) which is surjective, and thus bijective. We conclude that V and Im(T )
are isomorphic to eachother, so they have the same dimension.

For vector spaces V ,W over F, define the rank of T , denoted rank(T ), to be
dim(Im(T )). Similarly, define the nullity of T , denoted null(T ), to be dim(ker(T )).

2.6 Rank-Nullity (or Dimension) Theorem
Let V be finite dimensional, and W any v.s. over a common field F. If
T : V → W is a linear transformation, then null(T ) + rank(T ) = dim(V )

Proof.This follows directly from the 1st isomorphism theorem for vector space (to
be seen), along with the fact that dim(V / ker(T )) = dim(V ) − dim(ker(T )). A
more manual proof is as follows:

Let {v1, ..., vk} be a basis for ker(T ). By Steinitz’ Lemma, this can be completed
to a basis for V , say {v1, ..., vk , u1, ..., un−k}, where n = dim(V ). If we show
dim(Im(T )) = n − k, then the theorem follows.

Recall that T (B) spans Im(T ) for any basis B ⊆ V . Thus,

Span({T (v1), ..., T (vk), T (u1), ..., T (un−k)}) = Im(T )

However, vi ∈ ker(T ), so T (vi) = 0, and we conclude that {T (u1), ..., T (un−k)}
is spanning for Im(T ).
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This set (of n − k elements) is linearly independent as well:

a1T (u1) + ... + an−kT (un−k) = 0W

=⇒ a1u1 + ... + an−kun−k ∈ ker(T )

=⇒ a1u1 + ... + an−kun−k = b1v1 + ... + bnvn (uniquely)

=⇒ a1u1 + ... + an−kun−k − b1v1 − ... − bnvn = 0V

=⇒ ai = 0 ∀i by linear independence of basis of V

Let V ,W be n-dimensional vector spaces over F. For a linear transformationProposition 2.7

T : V → W , the following are equivalent:

1. T is injective 2. T is surjective 3. rank(T ) = n

Proof. T surjective ⇐⇒ rank(T ) = dim(Im(T )) = dim(W ) = n
T injective =⇒ null(T ) = 0, so rank(T ) = dim(V ) = n
rank(T ) = n =⇒ null(T ) = 0, so ker(T ) = {0V }, so T injective

2.7 First Isomorphism Theorem
Let V ,W be vector spaces over F. Let T : V → W be a linear transformation.
Then V / ker(T ) is isomorphic to Im(T ) through the isomorphism v → T (v),
where v := v + ker(T ) (as in quotient groups).

Proof. We know that T̂ : V / ker(T )→ Im(T ) given by T̂ (v) = T (v) is a well-defined
group isomorphism. Thus, we need to check that T̂ is linear. In particular,
we need to check scalar multiplication, since group homomorphisms obey
T (x + y) = T (x) + T (y).

T̂ (αv) = T̂ (av) = T (av) = aT (v) = aT̂ (v)

the space hom(v, w )

For vector spaces V ,W over F, define Hom(V ,W ) to be the set of all linear
transformations from V → W .

Hom(V ,W ) is a vector space over F, equipped with the following:Proposition 2.8

Addition T0 + T1 defines the function T0 + T1 : V → W , where (T0 + T1)(v) = T0(v) +
T1(v), where T0, T1 ∈ Hom(V ,W ).



19 linear transformations

Scalar Multiplication For T ∈ Hom(V ,W ) and a ∈ F, a × T defines the function (aT ) : V → W ,
where (aT )(v) = aT (v).

Zero Vector 0Hom(V ,W ) is the function which takes v → 0W

2.8 Basis for Hom
Let V ,W be vector spaces over F, which have bases β, γ , respectively, where
β is finite. The set τ = {Tv,w : v ∈ β, w ∈ γ} is a basis for Hom(V ,W ), where
Tv,w is the unique transformation such that Tv,w(v) = w and Tv,w(v′) = 0W
for all v′ ∈ β \ {v}.

Proof.Independence To consider a truly arbitrary subset of τ , we need to represent
all Tvi ,× and, for Tvi ,×, any number of × = wi . Thus, we form the following
combination:

⋆ a11Tv1,w1
+ ... + a1kTv1,wk

+ ...... + anlTvn,wl
+ ... + anmTvn,wm

= 0

where 0 is the transformation that sends v → 0W .

This must hold for all vi ∈ β, so we can evaluate the combination at v = v1.
Since Tv1,w(w) = w and Tvi (w) = 0 for i , j, w ∈ γ , we have

a11w1 + ... + a1kwk = 0 =⇒ a11 = ... = a1k = 0

as wi ∈ γ are members of a basis. Similarly, evaluating ⋆ at any vj will
imply that avj ,w = 0, w ∈ γ . These are all our coefficients, so ⋆ is a trivial
combination, and τ is linearly independent.

Spanning Consider a transformation T : V → W , which sends vi → wi for
wi ∈ W .

T (v) = T (a1v1 + ... + anvn) for constants ai ∈ F

= a1T (v1) + ... + anT (vn) = a1w1 + ... + anwn

= Tv1,w1
(v) + ... + Tvn,wn

(v) ♠

where Tvi ,wi
sends vi → wi and vj → 0 for j , i. For this last step, see that

Tvi ,wi
(v) = Tvi ,wi

(a1v1 + ... + anvn)

= a1Tvi ,wi
(v1) + ... + aiTvi ,wi

(vi) + ... + anTvi ,wi
(vn) = aiwi
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Thus, it only remains to show that Tvi ,wi
∈ Span(τ), but

Tvi ,wi
(v) = aiwi = ai[b1w

∗
1 + ... + bnw

∗
n] w∗i ∈ γ, bi ∈ F

= ai

[
b1

a1
Tv1,w

∗
1
(v) + ... +

bn
an

Tvn,w∗n(v)
]

where w∗i ∈ γ . The second line requires the following justification:

Tv1,w
∗
1
(v) = Tv1,w

∗
1
(a1v1 + ... + anvn) = a1w

∗
1

Since w∗i ∈ γ , Tvi ,w∗i ∈ τ , so Tvi ,wi
∈ Span(τ). Thus, ♠, i.e. T (v), ∈ Span(τ).

Clearly Span(τ) ⊆ Hom(V ,W ), so Span(τ) = Hom(V ,W ), and τ is a basis.

If V ,W are finite dimensional, then dim(Hom(V ,W )) = dim(V ) · dim(W ).Proposition 2.9

Proof. Let β = {v1, ..., vn}, γ = {w1, ..., wm}. Then {Tvi ,wj
: i ∈ [1, n], j ∈ [1, m]} is a

basis for Hom(V ,W ) by the theorem above. This has n ·m elements.

matrices

We wish to characterize a transformation T : Fn → Fm ∈ Hom(Fn,Fm) in matrix
form. Given T , we know it’s uniquely determined by its values on the standard
basis for Fn, Stn = {e1, ..., en}. Thus, T is uniquely determined by the ordered set

{T (e1), ..., T (en)} ⊆ Fm

Each T (ei) is a vector in Fm, so we can represent it as ⟨a1i , ..., ami⟩, where aij ∈ F.
Thus, form the following matrix of column vectors:

[T ] :=

T (e1) T (e2) · · · T (en)

 =


a11 · · · a1n
...

. . .
...

am1 · · · amn


We call this the matrix representation of T in the standard basis.

T (v) = [T ] · v, where v is represented as a column vector, ⟨b1, ..., bn⟩, for bi ∈ F.Proposition 2.10

Proof. We have v = b1e1 + ... + bnen in the standard basis. Then, T (v) = b1T (e1) + ... +
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bnT (en), where T (ei) = ⟨a1i , ..., ami⟩ ⊆ Fm. In column-vector form, this is:

T (v) =



b1a11 + ... + bna1n

b1a21 + ... + bna2n
...

b1am1 + ... + bnamn


=


a11 · · · a1n
...

. . .
...

am1 · · · amn

 ·

b1
b2
...
bn

 = [T ]v

In this way, matrices can act as linear transformations, but we would like to
formalize this idea.

For a given m × n matrix A, define the function LA : Fn → Fm by v → A · v, where
v ∈ Fn. This is a linear transformation by the proposition above. Proposition 2.10 established

that every transformation T
can be represented in ma-
trix form. One can work back-
wards, too: given a matrix A,
one forms the unique tranfor-
mation that sends ei → A(j),
the jth column of A.

The function from Hom(Fn,Fm) → Mm×n(F) defined by T → [T ] is an isomor-

Proposition 2.11

phism. Furthermore, its inverse Mm×n(F)→ Hom(Fn,Fm) is A→ LA.

Proof.

Linearity: We need to first show [T1 + T2] = [T1] + [T2] and [aT ] = a[T ] for
a ∈ F, T ∈ Hom(Fn,Fm). Consider the standard basis for Fn, Stn = {e1, ..., en}.
We have that

[T1 + T2] =

(T1 + T2)(e1) (T1 + T2)(e2) · · · (T1 + T2)(en)



=

T1(e1) + T2(e1) T1(e2) + T2(e2) · · · T1(en) + T2(en)



=

T1(e1) T1(e2) · · · T1(en)

 +

T2(e1) T2(e2) · · · T2(en)


= [T1] + [T2]

a[T ] = [aT ] is shown similarly.

Inverse: If an inverse exists for T → [T ], then it is bijective; as linearity has
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been shown, this is sufficient to show isomorphism by Prop. 2.1.

Consider the composition T → [T ]→ L[T ]. One sees L[T ](v) = [T ] · v = T (v)
by definition, so this is precisely the identity on Hom(Fn,Fm).

Now we need to show A→ LA → [LA] is the identity on Mm×n(F). Consider
the jth column of [LA]. This is the result of LA(ej ), which is A · ej . Thus:

[LA] =

A · e1 A · e2 · · · A · en

 =

A(1) A(2) · · · A(n)

 = A

As a corollary, we get that dim(Hom(Fn,Fm)) = dim(Mm×n(F))Proposition 2.12

Matrix Representations in Generality

Thus far we’ve considered matrix representations in Fn,Fm, but we can do so for
general vector spaces V ,W .

Let V be finite dimensional over F, and β = {v1, ..., vn} be a basis for V . Recall the
set {a1, ..., an} for which a1v1 + ... + anvn = v is the unique representation of V in
β. We call this set the coordinates of v in β. Represented as a column vector, define

[v]β =



a1

a2
...

an


∈ Fn

to be the coordinate vector of v in β.

Recall that, in the proof that all n-dimensional vector spaces V are isomorphic to
Fn, we used the transformation T (vi) = ei . We denote this function by Iβ : V → Fn.
For any v ∈ V , we have

Iβ(v) = Iβ(a1v1 + ... + anvn) = a1I(v1) + ... + anI(vn) = a1e1 + ... + anen = [v]β

Thus, Iβ : V → Fn which sends v → [v]β is an isomorphism.

Suppose we are given T : V → W , where V and W are both finite dimensional.
Let β = {v1, ..., vn} and γ = {w1, ..., wm} be bases of V and W , respectively. We know
that T is determined by its values on β. Thus, we can encode T in matrix-form,
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where the ith column corresponds to [T (vi)]γ ∈ Fm, as follows:

[T ]γβ :=

[T (v1)]γ [T (v2)]γ · · · [T (vn)]γ


We call this the matrix representation of T from β → γ .

2.9 Relation Between V ,W ,Fn, and Fm

Let V ,W be of dimension n and m with bases β and γ , respectively. Let T :
V → W be a linear transformation. Then the following diagram commutes:

V W

Fn Fm

T

Iβ Iγ

L[T ]
γ
β

Furthermore, the function Hom(V ,W )→ Mm×n(F) that maps T → [T ]γβ is
an isomorphism whose inverse is the map Mm×n(F) → Hom(V ,W ) which
maps A→ I−1

γ ◦ LA ◦ Iβ

Proof.To show the diagram commutes, we essentially prove Iγ ◦ T = L[T ]γβ
◦ Iβ .

We have Iγ ◦ T (v) = [T (v)]γ , applying definitions. On the other hand,

L[T ]γβ
◦ Iβ(v) = L[T ]γβ

([v]β) = [T ]γβ · [v]β

Thus, we need to show that [T ]γβ · [v]β = [T (v)]γ . To do so, write [v]β =
⟨a1, ..., an⟩ ∈ Fn, and recall that

[T ]γβ :=

[T (v1)]γ [T (v2)]γ · · · [T (vn)]γ


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Then we can write

[T ]γβ · [v]β = a1[T (v1)]γ + ... + an[T (vn)]γ

= [a1T (v1) + ... + anT (vn)]γ by linearity of Iγ

= [T (a1v1 + ... + anvn)]γ by linearity ofT

= [T (v)]γ and we are done

Compositions and Matrix Multiplication
By function, we don’t just
mean linear transformations Recall the composition of functions T : V → W , S : W → X, written as S ◦

T (v) = S(T (v)). Compositions are associative: for functions T → S → R, we have
(R ◦ S) ◦ T = (R ◦ S)(T (v)) = R(S(T (v))) = R(S ◦ T (v)) = R ◦ (S ◦ T (v)).

Consider the two linear maps LA : Fn → Fm, LB : Fm → Fl . Then the composition
LB ◦ LA is itself a linear transformation, and is equal to LC : Fn → Fl for some
matrix C ∈ Ml×n(F). This unknown C is precisely [LB ◦ LA], by definition.

For two matrices A and B, define their product B · A to be [LB ◦ LA].

One can work out, explicitly,
what [LB◦LA] is, and see that
it agrees with our usual no-
tion for B · A

LB ◦ LA = LB·A. The proof for this follows immediately from [LB ◦ LA] = B · A.Proposition 2.13

Matrix multiplication is associative.Proposition 2.14

Proof. C(BA) = C · [LB ◦ LA] = [LC ◦ (LB ◦ LA)] = [(LC ◦ LB) ◦ LA] = (CB)A

For V ,W , U finite-dimensional, with bases α, β, γ , respectively, and transforma-Proposition 2.15

tions T : V → W , S : W → U , we have the similar statement [S ◦T ]γα = [S]γβ · [T ]βα.Where T := LA and S := LB
as above, this is equivalent
to saying [LB ◦ LA] = B · A,
which has been shown. invariants and nilpotent transformations

Preliminaries

For a function f : X → Y , we call g : Y → X

1. a left inverse if g ◦ f = IX , the identity on Xi.e. takes x→ x

2. a right inverse if f ◦ g = IY , the identity on Y

3. an inverse if g is both a left and right inverseSometimes called a two-
sided inverse

Also consider the following facts, whose proofs are good exercise:

1. f has a left inverse ⇐⇒ f is injective

2. f has a right inverse ⇐⇒ f is surjective
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3. f has an inverse ⇐⇒ f is bijective

Examples:

1. δ : F[t]n+1 → F[t]n, the derivative of polynomials, has a right inverse,
namely the anti-derivative.

2. Let f : F[[t]] → F[[t]] be the left shift map of coefficients, i.e.
∞∑
0
ant

t →
∞∑
1
ant

n−1. This has a right inverse, namely the right shift map of coefficients,

∞∑
0
ant

n →
∞∑
0
ant

n+1. Recall that F[[t]] is the set of formal power series.

Let T : V → W be a transformation of vector spaces of the same (finite) dimension. Proposition 2.16

Then tfae:

T has a right inverse T has a left inverse T has an inverse

Proof.This follows directly from Prop. 2.7, which states that transformations over n
dimensional spaces are surjective iff injective

Recall that an n × n dimensional matrix A is called invertible iff there exists B
such that A · B = B · A = I , the identity matrix. One notates B = A−1.

Proposition 2.17

1. LA is invertible ⇐⇒ A is invertible, in which case L−1
A = LA−1 .

2. A is invertible ⇐⇒ it has a left inverse ⇐⇒ it has a right inverse.

Proof.LA is invertible ⇐⇒ there exists T : Fn → Fn such that LA ◦ T = T ◦ LA =
IFn ⇐⇒ ∃B ∈ Mn(F) with LA ◦ LB = LB ◦ LA = IFn ⇐⇒ ∃B s.t. LAB = LBA =
IFn ⇐⇒ ∃B s.t. AB = BA = [I], and [I] is the identity matrix (this last bit has
not been previously shown, but the verification is easy).

This shows (1), and (2) follows directly.

T-Invariants

Let T : V → V be a linear transformation over a vector space V . Transformations
of this form are sometimes called linear operators. A subspace W ⊆ V is called T
invariant if T (W ) ⊆ W . i.e., you can apply T to W

an indeterminate amount of
times, and it will always re-
main as a subset of itself.

Examples:

1. For T : V → V , both ker(T ) and Im(T ) are T -invariant For (1), note that T (Im(T )) ⊆
Im(T ) by definition, and
T (ker(T )) = 0V ∈ ker(T )
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2. For any n ∈ N, where T n := T ◦ T ◦ ... ◦ T︸           ︷︷           ︸
n times

, ker(T n) is T -invariant.
Proof to come

3. For T : R3 → R3 defined by T (x, y, z) =
〈
2x + y, 3x − y, 7z

〉
, both the xy-

plane and z-axis are T -invariant. As proof, observe T (x, y, 0) =
〈
2x + y, 3x − y, 0

〉
⊆

xy-plane, and also T (0, 0, z) = ⟨0, 0, 7z⟩ ⊆ z-axis. In fact, R3 always decom-
poses into a direct sum of 2 T−invariant subspaces, the xy-plane and z-axis.

For T : V → V , and any n, we haveProposition 2.18

1. V ⊇ Im(T ) ⊇ Im(T 2) ⊇ ..., and Im(T n) is T -invariant.

2. {0V } ⊆ ker(T ) ⊆ ker(T 2) ⊆ ..., and ker(T n) is T -invariant.

Proof. (1): Let x ∈ Im(T n+1). Then x = T n+1(y) = T n(T (y)) ∈ Im(T n) for some
y, so Im(T n) ⊇ Im(T n+1). Now let x ∈ Im(T n). Then x = T n(y), so T (x) =
T (T n(y)) = T n(T (y)), and we conclude T (x) ∈ Im(T n), i.e. T (Im(T n)) ⊆
Im(T n), and Im(T n) is T -invariant.

(2): Let x ∈ ker(T n). Then T n+1(x) = T (T n(x)) = T (0) = 0, so x ∈ ker(T n+1),
and ker(T n) ⊆ ker(T n+1). We also see that T (x) ∈ ker(T n), since T (T n(x)) =
T n(T (x)) = 0, from before. Thus, ker(T n) is T -invariant.

Nilpotent Transformations

Nilpotency has varying definitions in mathematics: for a ring R, r ∈ R is called
nilpotent if rn = 0 for some n. In our study, a linear transformation T : V → V is
called nilpotent if T n = 0 for some n, and a matrix A ∈ Mn(F) is nilpotent if An = 0
for some n.

Examples:

1. Let V be an n-dimensional vector space over F with a basis β = {v1, ..., vn},
and let T : V → V be the unique transformation that ”shifts” basis members,
i.e. T (v1) = 0V , T (v2) = v1, T (v3) = v2, etc. Then T n sends vi → vi−n = 0 for
i ≤ n, which is all vectors on the basis, so T is nilpotent.

2. δ : F[t]n → F[t]n, the differentiation function on polynomials, is nilpotent,
since δn+1 = 0 (the n + 1th derivative of ≤ n-degree polynomials is 0).

3. For A ∈ Mn(F), A is nilpotent ⇐⇒ LA : Fn → Fn is nilpotent. As proof,
recall that L[Ak] = Lk[A], so Lk[A] = 0 ⇐⇒ L[Ak] = 0 ⇐⇒ Ak = 0, sincec.f. Prop. 2.11, 2.14

LA � A.

4. Matrices which are strictly upper triangle (i.e. 0s on i ≤ j) are nilpotent.
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If V is n-dimensional and T : V → V is nilpotent, then T n = 0. Proposition 2.19

Notation

For f : X → Y , A ⊆ X, de-
fine the restriction of f to A,
fA : A→ Y , taking a→ f (a)

2.10 Fitting’s Theorem
For an n-dimensional vector space V over F and T : V → V , there exists a
decomposition V = U ⊕W , where U,W ⊆ V are such that TU : U → U is
nilpotent and TW : W → W is an isomorphism.

Proof.Recall that

V ⊇ Im(T ) ⊇ Im(T 2) ⊇ ... and {0V } ⊆ ker(T ) ⊆ ker(T 2) ⊆ ...

=⇒ n ≥ dim(Im(T )) ≥ ... and 0 ≤ dim(ker(T )) ≤ ...

Since both dim ker(T k) and dim Im(T k) are bound by [0, n], these inequalities
may be strict at most n times, so ∃N ∈ N such that ∀ k ≥ N , dim(Im(T k+N )) =
dim(Im(T N )). Note that Im(T k+N ) ⊆ Im(T N ), so this necessarily means that
Im(T k+N ) = Im(T N ) (c.f. Thm. 1.6). Similarly, ker(T k+N ) = ker(T N ).

Let U := ker(T N ) and W := Im(T N ). We know that these sets are T -invariant.

T |U is nilpotent: T N (ker(T N )) = 0 by definition. We also see that T |U maps
to U as claimed, since ker(T N ) is T -invariant.

T |W is an isomorphism: T (Im(T N )) = Im(T N+1) = Im(T N ) by assumption, so
T |W is surjective. Thus, T |W is also injective, by Prop. 2.7., and is an isomor-
phism.

Lastly, we need to show that U ⊕ W = V and U ∩ W = {0}. For the latter,
suppose v ∈ U ∩W . Then T N (v) = 0 as shown, and T is an isomorphism over
W , so v = {0}.

dim(U ⊕ W ) = dim(U ) + dim(W ) − dim(U ∩ W ) = dim(U ) + dim(W ) =
dim(ker(T N )) + dim(Im(T N )) = dim(V ), which means U ⊕ W = V again
by Thm 1.6.

dual spaces

For a vector space V over F, we call a linear transformation V → F a linear
functional. The space of linear functionals, i.e. Hom(V ,F), is denoted V ∗, and is
called the dual space of V .
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For finite dimensional V , we already know that dim(V ∗) = dim(Hom(V ,F)) =
dim(V ) ·dim(F) = dim(V ). In accordance with our construction of a basis for Hom
(pp. 19-20), we let β := {v1, ..., vn} be a basis for V and γ = {1} be the standard
basis for F. Then β∗ := {f1, ..., fn} is a basis for Hom(V ,F) = V ∗, where fi : V → F
are precisely Tvi ,1 in our previous notation, i.e. fi(vi) = 1 and fi(vj ) = 0 when i , j.
We call the set β∗ the dual basis for β.

β∗ is a basis for V ∗, and every f ∈ V ∗ has the unique representationProposition 2.20

f =
n∑
i=1

f (vi)fi

Proof. The first part of this proposition is just a special case of Theorem 2.8, as
discussed above. f thus does have a unique representation in β∗, so if f =
n∑
i=1

f (vi)fi = f , then this is indeed unique. It is enough to show that these

functions agree on vi ∈ β, as any v ∈ V could be representation by linearity.

n∑
i=1

f (vi)fi(vj ) = f (vi)fi(vi) = f (vi)

Remark: we will use the
Kronecker delta function in
the future. It is defined to be

δij =
{

1 if i = j
0 if i , j

Note that fi (vj ) = δij
Example: Let V := Fn be viewed as a vector space over F. Then V ∗ has a
basis β∗ := {f1, ..., fn}, where fi(ej) = δij . Since fi are linear transformations,
they can be represented as LAi

, where Ai ∈ M1×n(F). We can then deduce that
Ai = [0, ..., 0, 1, 0, ..., 0], the row vector with a 1 in the ith position.

Just as we took a dual space of V , we can take a dual space of the dual space, and
denote it V ∗∗. Since dim(V ) = dim(V ∗) in finite dimensions, we know dim(V ∗) =
dim(V ∗∗), and conclude that dim(V ) = dim(V ∗∗). From this statement arises an
abstract notion of isomorphism between V and V ∗∗.

It can be shown as exercise that the natural map from V → V ∗ which takes
vi → fi is a vector space isomorphism. We’ll try to form a similar natural map
between V and V ∗∗ to strengthen notations of their isomorphism.

Let V be an arbitrary vector space over F. For each x ∈ V , define x̂ ∈ V ∗∗ to be
a function from V ∗ → F that takes f → f (x). Another way of writing this is:
x̂ = f (x), where f ∈ V ∗.

2.11 The function x→ x̂ is an isomorphism from V → V ∗∗.

Proof.



29 linear transformations

If x → x̂ is injective, it will follow immediately that, if dim(V ) < ∞, then
x→ x̂ is an isomorphism, as it must also be surjective (recall that dim(V ) =
dim(V ∗∗)).

Let x ∈ V , and let x̂ = 0V ∗∗ . We have a unique representation a1v1 + ...+ anvn =
x in a basis β = {v1, ..., vn} for V . Then x̂ takes f → f (x) for f ∈ V ∗, so
x̂(fi) = fi(x) = fi(a1v1 + ... + anvn) = ai . But x̂ = 0, so ai = 0. Now, since
x̂(fi) = ai in generality, all ai = 0, so x = 0.

Let V be a vector space and S ⊆ V some subset. Then we call the set

S⊥ := {f ∈ V ∗ : f |S = 0} = {f ∈ V ∗ : f (u) = 0 ∀u ∈ S}

the annihilator of S.

We observe the following facts about the annihilator of S ⊆ V : Proposition 2.21

1. S⊥ is a subspace of V ∗

2. S1 ⊆ S2 ⊆ V =⇒ S⊥1 ⊇ S⊥2

3. S⊥ = (Span(S))⊥

Proofs.For (1), we have (af1 + f2)(u) = af1(u) + f2(u) = 0 for any u ∈ S, so then
af1 + f2 ∈ S⊥. (2)’s proof is just an observation: if S1 ⊆ S2, then we will find
more f ∈ V ∗ which map to 0 on S1 than those which map to 0 on S2, as the
latter is just a more restrictive condition. For (3), note that, if f ∈ V ∗ takes
all u ∈ S to 0, then it must also take all linear combinations of u ∈ S to 0, so
S⊥ ⊆ (Span(S))⊥. The converse holds by (2).

For S ⊆ V , we denote Ŝ := {x̂ : x ∈ S} ⊆ V ∗∗ in the finite-dimensional case. From
Theorem 2.11, we have V̂ = V ∗∗. Some texts will refer to V ∗∗ explicitly as V̂ , but
this is a notational preference that we will not indulge.

2.12 Duality of Annihilators
If V is finite dimensional and U ⊆ V is a subspace, then (U⊥)⊥ = Û .

Proof.x̂ ∈ (U⊥)⊥ ⇐⇒ x̂(f ) = f (x) = 0 ∀f ∈ U⊥. Hence, if x ∈ U , then x̂ ∈ (U⊥)⊥,
and we conclude that Û ⊆ (U⊥)⊥.

That was the easy direction. For the converse, if x̂ ∈ (U⊥)⊥, then we know
f (x) = 0 ∀f ∈ U⊥. We want to show that x ∈ U . Suppose otherwise. Then we
define f ∈ U⊥ such that f (x) = 1, by which a contradiction arises.
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Let {u1, ...uk} be a basis for U . Note that, since x < U , the set {u1, ..., uk , x}
is still linearly independent. We can thus extend this to a basis for U , i.e.
{u1, ..., uk , x, v1, ..., vm}. Define f ∈ V ∗ that takes all elements of this basis to
0 except x, which is mapped to 1. Observe, then, that f (u) = 0∀u ∈ U , so
f ∈ U⊥. But f (x) = 1  

=⇒ x ∈ U , and thus x̂ ∈ Û =⇒ Û = (U⊥)⊥

For a finite dimensional vector space V and subspace U ⊆ V , we haveProposition 2.22

U = {x ∈ V : ∀f ∈ U⊥, f (x) = 0}

Proof. We know the ⊆ direction holds trivially. Suppose x ∈ V is such that f (x) = 0
for any f ∈ U⊥. Then x̂ ∈ (U⊥)⊥, and from above, x̂ ∈ Û , so x ∈ U .

Let V ,W be vector spaces over F and T : V → W be a linear transformation. The
dual or transpose of T is the map T t : W ∗ → V ∗ which takes g → g ◦ T .

If dim(V ) = n and U ⊆ V , then dim(U⊥) + dim(U ) = dim(V ) = n. As proof, weProposition 2.22a

let {v1, ..., vk} be a basis for U , {v1, ..., vk , vk+1, ..., vn} be a basis for V , and notice
that {fk+1, ..., fn} is a basis for U⊥.

The transpose has the following properties:Proposition 2.23

1. T t : W ∗ → V ∗ is linear

2. ker(T t) = (Im(T ))⊥

3. Im(T t) = (ker(T ))⊥. If V ,W are finite dimensional, we also have dim(Im(T )) =
dim(Im(T t)).

4. If V ,W are finite dimensional with bases β, γ , respectively, the

[T t]β
∗

γ∗ = ([T ]γβ )t

Proofs. For (1), T t(ag1 + g2) = (ag1 + g2) ◦ T = a(g1 ◦ T ) + (g2 ◦ T ) = aT t(g1) + T t(g2).

For (2), g ∈ ker(T t) ⇐⇒ T t(g) = 0 ⇐⇒ T t(g)(v) = 0 ∀v ∈ V ⇐⇒
g(T (v)) = 0 ⇐⇒ g(w) = 0 ∀w ∈ Im(T ) ⇐⇒ g ∈ (Im(T ))⊥

For (3), fix f ∈ Im(T t) and u ∈ ker(T ). Then note that that f (u) = T t(g)(u)
for some g ∈ W ∗. Then T t(g)(u) = g(T (u)) = g(0W ) = 0, so f ∈ (ker(T ))⊥. We
conclude that Im(T t) ⊆ (ker(T ))⊥.

Now suppose that V ,W are both finite dimensional. The obvious roadmap to
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showing equality, since we’ve shown inclusion, is showing equal dimension-
ality between ker(T t) and (Im(T ))⊥.

dim(Im(T t)) = dim(W ∗) − dim(ker(T t)) by rank-nullity. But the dimension
of W ∗ is the same as that of W . Furthermore, we know dim(ker(T t)) =
dim((Im(T ))⊥) by (2), so dim(Im(T t)) = dim(W ) − dim((Im(T ))⊥). Then
dim((Im(T ))⊥) = dim(W ) − dim(Im(T )), so we conclude that dim(Im(T t)) =
dim(Im(T )).

On the other hand, dim((ker(T ))⊥) = dim(V ) − dim(ker(T )), which, by rank-
nullity, is dim(Im(T )). Thus, dim(Im(T t)) = dim((ker(T ))⊥)

For (4), let β, γ be finite bases for V and W , respectively, and recall that
A := [T ]γβ is the matrix[T (v1)]γ [T (v2)]γ · · · [T (vn)]γ


where β = {v1, ..., vn} and γ = {w1, ..., wm}. Then A(j) = [T (vj)]γ , and hence

T (vj ) =
m∑
k=1

Akjwk . Similarly, we express B := [T t]β
∗

γ∗ as the matrix

[T t(g1)]β∗ [T t(g2)]β∗ · · · [T t(gm)]β∗


where γ∗ = {g1, ..., gm} and β∗ = {f1, ..., fn}. Then T t(gi) =

n∑
j=1

Bjifj =

n∑
j=1

T t(gi)(vj ) · fj , so Bji = T t(gi)(vj ). It remains to show that Bji = Aij .

Bji = T t(gi)(vj ) = gi(T (vj ))

= gi

 m∑
k=1

Akjwk

 =
m∑
k=1

Akjgi(wk)

=
m∑
k=1

Akjδik = Aij
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Let V ,W be vector spaces over F and T : V → W be some linear transformation.Proposition 2.24

Then

1. T t is injective ⇐⇒ T is surjective

2. T is injective ⇐⇒ T t is surjective, provided that V ,W finite dimensional.

Proof. For (1): we know that T t is injective iff ker(T t) = {0}, which happens ⇐⇒
(Im(T ))⊥ = {0} by part (2) of Prop 2.23. This implies that Im(T ) = W , i.e. T
is surjective, by Duality (i.e. Prop 2.22). Conversely, if Im(T ) = W , then the
function which takes all of W to 0 is precisely 0W ∗ , i.e. (Im(T ))⊥ = 0. Then
part (2) from Prop 2.23 says ker(T t) = 0, i.e. T t is injective.

Similarly for (2), if T is injective, then ker(T ) = {0}, so (ker(T ))⊥ = V ∗. Then
part (3) of Prop 2.23 says that Im(T t) = V ∗. Thus T t is surjective. Conversely,
if Im(T t) = V ∗, then (ker(T ))⊥ = V ∗. The only element which is always taken
to 0 is 0, so ker(T ) = {0}, i.e. T is injective.

Applications of Dual Spaces on Matrices

Recall that, for T : V → W , the rank of T is dim(Im(T )). Furthermore, if
β = {v1, ..., vn} is a basis for V , then Im(T ) = Span({T (v1), ..., T (vn)}). In par-
ticular, dim(Im(T ))) ≤ n, where dim(V ) = n (see dimension theorem). Thus,
we can express dim(Im(T )) as the size of a maximally independent subset of
{T (v1), ..., T (vn)}.

For an m×n matrix A ∈ Mm×n(F), define rank(A), or the rank of A, by rank(Im(LA)).

Define also the column rank of A, denoted c-rank(A), to be the size of a maximally
independent subset of {A(1), ..., A(n)}, where A(j) denotes the jth column of A.

Finally, we define the row rank, or r-rank(A), to be the size of a maximally inde-
pendent subset of {A(1), ..., A(m)}, where A(i) denotes the ith row of A.

rank(A) = c-rank(A), and this follows from the definitions.Proposition 2.25

rank(A) = rank(At) = r-rank(A).Proposition 2.26

Proof. We know that rank(At) = c-rank(At) = r-rank(A), and thus we only need to
show that rank(A) = rank(At). But we’ve seen that dim(Im(T )) = dim(Im(T t))
from above, so rank(A) = rank(LA) = rank(LtA). Then rank(A) = rank(At) by
part (4) of the same proposition (one should ponder about what β, γ, β∗, γ∗

are).

We then conclude that c-rank(A) = r-rank(A) = rank(A) for all A ∈ Mm×n(F).
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system of linear equations

A system of linear equations over some field F is as follows:

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

...

am1x1 + am2x2 + ... + amnxn = bm

where aij , bi ∈ F and xj are variables. We can re-write this as follows: A · x = b,
where x = ⟨x1, ..., xn⟩ and b = ⟨b1, ..., bm⟩ ∈ Fm. Thus, x is a solution to Ax = b iff
LA(x) = b iff x ∈ L−1

A (b) (reads: x is in the preimage of LA(b)).

Hence, Ax = b has a solution iff b ∈ Im(LA) = Span({A(1), ..., A(n)}). In particular,
if b = 0, we always have a solution, namely x = 0. There may also be non-zero
solutions: call Ax = 0 the homogeneous system of equations for A. We observe
that the homogeneous system has non-zero solutions exactly when ker(LA) is
non-trivial.

Note that, if y is a solution to a homogeneous system, and Ax = b, then A(x+y) = b Proposition 2.27

by linearity. Thus, for A ∈ Mm×n(F) and b ∈ Im(LA), the set of solutions to Ax = b
is precisely the coset v + ker(LA), where v is a particular solution to Ax = b, i.e.
A · v = b.

Proof.Indeed, v + a, where a ∈ ker(LA) and v is a solution to Ax = b, is also a
solution to Ax = b. Conversely, if v and w are solutions to Ax = b, then
A(w − v) = b − b = 0, so w − v ∈ ker(LA). We then write w = v + (w − v) = v + a
for some a ∈ ker(LA).

If m < n, and A ∈ Mm×n(F), then there exists a non-zero solution to Ax = 0. Proposition 2.28

Proof.null(LA) = n − rank(LA) = n − dim(Im(LA)) > n −m > 0, so ker(LA) , {0}

For any A ∈ Mm×n(F), we have Proposition 2.29

1. ker(A) is trivial ⇐⇒ Ax = b has at most 1 solution for each b ∈ Fm

2. If n = m, then A is invertible ⇐⇒ Ax = b has exactly one solution.

Proof.Part (a) follows from our statement about the coset representation of the
solution set (Prop 2.27), and part (b) follows from (a), with consideration of



MATH 251 Class Notes 34

the fact that ker(A) = {0} ⇐⇒ LA injective ⇐⇒ LA surjective.

Elementary Operations

Let A ∈ Mm×n(F). An elementary row/column operation is any of the following:

Type I Interchanging any 2 rows/columns

Type II Multiplying a row/column by some non-zero scalar in F

Type III Adding to a row/column a scalar multiple of some other row/column

We refer to these operations by their type. Observe that these operations are
invertible linear transformations, and therefore have a matrix representation. In
particular, one can invert an operation by performing one of the same type.

A square matrix E ∈ Mn(F) is called elementary if it obtained from In after applying
an elementary row or column operation.

Example: 
1 0 0
0 0 1
0 1 0



1 0 0
0 1 0
0 0 3



1 0 0
2 1 0
0 0 1


are obtained from I3 via Type I, II, and III elementary row operations, respectively.

Each elementary matrix E ∈ Mn(F) obtained by In via a row operation may beProposition 2.30

obtained from In via a column operation of the same type, and vice-versa.

Proof. Proof left as observational exercise.

2.13 Consistency of Elementary Operations
For A, B ∈ Mm×n(F), if B is obtained from A by applying an elementary row
operation, then B = EA, where E ∈ Mm(F) is obtained from Im via the same
operation. If B is instead obtained via a column operation, then B = AE,
E ∈ Mn(F), and E is obtained from In.

Conversely, if E is an elementary matrix obtained via some row or column oper-Proposition 2.31

ation, then EA or AE is obtained from A by the same row or column operation,
respectively. Proofs of this and the theorem above are observational.

Elementary matrices are invertible.Proposition 2.32

Proof.
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This just follows from the fact that elementary operations are invertible by
one of the same type.

If A ∈ Mm×n, P ∈ GLm(F), and Q ∈ GLn(F), then rank(P A) = rank(A) = rank(AQ). Proposition 2.33

More generally, if T : V → W is linear with V ,W finite dimensional, and S : W →
W, R : V → V are linear and invertible, then rank(S ◦ T ) = rank(T ) = rank(T ◦R).

Proof.Recall that GLn(F) is the space of invertible square matrices of size n. We only
need to prove the latter part of this statement, as the claim about matrices is
just a special case of the more general claim.

We have rank(T ) = dim(Im(T )). Since S : W → W is an isomorphism, S |Im(T )
is injective, and thus dim(ker(S |Im(T ))) = {0}, i.e. dim(Im(T )) = dim(Im(S |Im(T ))).
But S |Im(T ) = S ◦ T , so indeed rank(T ) = rank(S ◦ T ).

For rank(T ◦ R), observe that Im(T (R(v))) = Im(T ), since R is bijective.

We immediately see that elementary row/column operations are rank-preserving,
as they are invertible, i.e. B = ERAEC =⇒ rank(A) = rank(B), where ER, EC are
elementary row/column operations, respectively.

2.14 Reduction of Square Matrices
Every square matrix A ∈ Mn(F) can be transformed into a matrix B of the
following form, using row or column operations. In particular, r = rank(A):

B =


Ir

r×n−r

0

0

n−r×r

0

n−r×n−r

︸              ︷︷              ︸
n×n

Proof.We’ll show this by induction on n. This clearly holds for n = 1 (just multiply
by a−1

11). For n − 1 → n, if A = 0, then we have nothing to show. Otherwise,
assume A has a non-zero element, and swap at most two rows and two
columns to get this element in the a11 position (in practice, this is swapping
columns 1 and n′, and rows 1 and m′, where the non-zero element is am′n′ ).
Thus, we assume that a11 , 1 by taking a scalar inverse.

We perform repeated type III row operations that take Ai → A(i) − A(1)ai1 (i.e.
Gaussian elimination) to get all elements ai1 = 0. Similarly, we perform the
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column operation A(j) → A(j) − A(1)a1j to get all elements aj1 = 0. We end up
with the following matrix after all aforementioned operations:

1 0 · · · 0 0
0

... A’

0
0


Now, by our induction hypothesis, we know there exists operations ER, EC

such that ERA
′EC is of the desired form. Note that these operations may still

be performed on the larger matrix above, and, since they effect only rows and
columns ≥ 2, the zero entries ai1 and a1j will remain 0.

Thus, we have transformed A into


I 0

0 0

 as desired

For each A ∈ Mn(F), there exists invertible matrices P , Q ∈ GLn(F) such thatProposition 2.34

B = P AQ is of the form
(
I 0
0 0

)
as above. Moreover, P and Q are products of

elementary matrices.

Proof. This follows immediately from the theorem above, observing that P are row
operations and Q are column operations.

Every invertible matrix A ∈ GLn(F) is a product of invertible matrices.Proposition 2.35

Proof.
There exist P , Q ∈ GLn(F) such that P AQ =

(
I 0
0 0

)
with r = n, i.e. P AQ =

In, since A is invertible. Then A = P −1Q−1, but P and Q are themselves
products of elementary matrices, so A = [R1 · ... · Rk]−1[C1 · ... · Cl]−1 = R−1

k ·
... · R−1

1 C−1
l · ... · C

−1
1 , where Ri and Ci are row and column operations.

The transpose of an invertible matrix is invertible, and (At)−1 = (A−1)t. This doesProposition 2.36

not follow from anything given above, but is useful nonetheless.

Proof. AA−1 = I = A−1A, so (A−1)tAt = I tn = At(A−1)t, but I tn = In, so in particular
(At)−1 := (A−1)t yields (At)−1At = In = At(At)−1, as desired.
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From Prop 2.35, we noted that an invertible matrix A can be written as A =
E1 · ... · Ek for elementary matrices Ei , and thus A−1 = E−1

k · ... · E
−1
1 . Thus, treating

E−1
i as row operations, we have E−1

k · ... · E
−1
1 A = In. We conclude that the same

operations which turn A into In also turn In into A−1.

Define now the augmented matrix (A|B) to be the matrix whose first columns are
that of A, and last columns that of B. Note that A and B must have the same
number of rows.

Observe now that B(A|In) = (BA|BIn) = (BA|B). In particular E−1
k · ... · E

−1
1 (A|In) =

(E−1
k · ... ·E

−1
1 A|E−1

k · ... ·E
−1
1 ) = (In|A−1). Thus, there exist elementary row operations

which turn (A|In) to (In|A−1).

Let A ∈ Mn(F) be invertible. If row operations turn (A|In) into (In|B), then B = A−1. Proposition 2.37

Solving Linear Systems with Row Operations

For matrices A1, A2 ∈ Mm×n(F) and b1, b2 ∈ Fm, then the systems A1x = b1 and
A1x = b2 are called equivalent if their solution sets are equal. In particular, any
two systems with no solutions are equivalent.

Observe that, for G ∈ GLm(F), A ∈ Mm×n(F), then the system GAx = Gb is
equivalent to the system Ax = b. As we know, multiplying on the left by an Just multiply by G−1 or G to

see this!elementary matrix corresponds to a row operation, so clearly EAx = Eb and
Ax = b are equivalent, meaning:

The system encoded in E(A|b) is equivalent to that of (A|b), where A ∈ Mm×n, Proposition 2.38

b ∈ Fm, and E is an elementary row operation. This follows from the observations
above.

Let B ∈ Mn(F). We say that B is in row echelon form if:

(i) For each row B(i), the first non-zero entry (i.e. pivot) occurs at a column
j, where j is strictly larger than the column in which B(i−1) has its first
non-zero entry.

(ii) All rows with only zero entries are at the bottom of the matrix

If B is in row echelon form and all pivots (i.e. first non-zero entry of a given row)
are equal to 1, then we say that B is in reduced row echelon form, or rref.

2.15 Existence of Gaussian Elimination
There exist elementary operations of types I and III which transform A ∈
Mm×n(F) into reduced echelon form. Moreover, the addition of type II opera-
tions can yield rref. This procedure is called Gaussian elimination.
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The proof of this is tedious and observational, but consider the following example:

A =


3 2 3 −2
1 1 1 0
1 2 1 −1

 I→


1 2 1 −1
1 1 1 0
3 2 3 −2

 III→


1 2 1 −1
0 −1 0 1
0 −4 0 1


III→


1 2 1 −1
0 −1 0 1
0 0 0 −3

 III→


1 0 1 1
0 −1 0 1
0 0 0 −3

 III→


1 0 1 0
0 −1 0 0
0 0 0 −3

 II→


1 0 1 0
0 1 0 0
0 0 0 1


2.16 Characterization of Solution Set
For a system Ax = b, we form A′x = b′ via Gaussian elimination on (A|b).

1. Ax = b has a solution ⇐⇒ rank((A′ |b′)) = rank(A′) = the # of non-
zero rows of A′.

2. If Ax = b has a solution, then its solution set is v + t1u1 + ... + tn−run−r ,
where v is a particular solution, ti ∈ F, and {u1, ..., un−r} is a basis for
ker(LA), where r = rank(A) and n is the number of columns of A.

Proof. We will only show (1), since (2) follows directly from previous theory (see
Prop 2.27). Recall that Ax = b has a solution ⇐⇒ A′x = b′ has a so-
lution ⇐⇒ b′ ∈ Im(L′A) = Span(col’s of A′), ⇐⇒ Span(col’s of A′) =
Span(col’s of (A′ |b′)) (Prop 1.4), and this holds iff rank(A′) = rank(A′ |b′).

As a corollary, we see that Ax = b has a solution ⇐⇒ the rref does not have a
pivot in the last column.

To show that the rref of a particular matrix A is uniquely determined, we
observe the following 2 lemmas:

Let B ∈ Mm×n(F) be obtained from A ∈ Mm×n(F) via a row operation. Then forLemma 1

any chosen constants ai ∈ F, we have

a1A
(1) + ... + anA

(n) = 0 ⇐⇒ a1B
(1) + ... + anB

(n) = 0

Let B be the rref of A ∈ Mm×n(F). Then:Lemma 2

1. The number of non-zero rows of B = rank(B) = rank(A) =: r

2. For each i = 1, ..., r, denote ji to be the column of the pivot contained in
the ith row. Then B(ji ) = ei ∈ Stn. In particular, {B(j1), ..., B(jr )} is linearly
independent.
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3. Each column of B without a pivot is in the span of the previous columns.

As a corollary, we get that the rref of A is unique.

determinate

Define the determinate, notated det(A), of a square matrix A ∈ Mn(F), to be a
scalar in F that is 0 ⇐⇒ A is not invertible.

To define this, we note that A ∈ Mn(F) is invertible ⇐⇒ LA is invertible ⇐⇒ LA
is bijective, which occurs ⇐⇒ ker(LA) = {0}, i.e. rank(LA) = rank(A) = n ⇐⇒
the columns of A are linearly independent.

Example: Let A ∈ M3(R), and let A =


− − v1 − −
− − v2 − −
− − v3 − −

, where vi ∈ R3. We see that, if

{v1, v2, v3}were linearly dependent, then dim(Span(v1, v2, v3)) would be at most 2.
This is equivalent to saying that (at least) one of vi lies in the span of the other 2
vj ’s. Visually, we have that the parallelepiped composed of v1, v2, v3 has “volume
0.” Well, we wanted the determinate to be 0 when A is not invertible, i.e. the rows
are linearly dependent. Thus, we may want to generalize the notion of volume to
define the determinate.

A function δ : Mn(F)→ F is called (row) n-linear (also called an n-linear form or
multilinear form) if it is linear in every row, i.e.

δ



—— v1 ——
...

—— vi−1 ——
——cx + y——
—— vi+1 ——

...
—— vn ——


= cδ



—— v1 ——
...

——vi−1——
—— x ——
——vi+1——

...
—— vn ——


+ δ



—— v1 ——
...

——vi−1——
—— y ——
——vi+1——

...
—— vn ——


where all rows 1, ..., i − 1, i + 1, ..., n remain constant. For example, one can show
that δ(A) := a11 · ... · ann is n-linear, but tr(A), which sums diagonal elements, is
not n-linear.

For an n-linear form δ : Mn(F)→ F, if a matrix A ∈ Mn(F) has a zero row, then Proposition 2.39

δ(A) = 0. To show this, observe that δ(A) = δ(A) + δ(A) in this case.

Note that, in the parallelepiped example described above, if two sides are equal,
then the volume is 0. This motivates the following definition:
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An n-linear form δ : Mn(F)→ F is called alternating if δ(A) = 0 for any matrix A
which contains two equal rows.

Let δ : Mn(F)→ F be an alternating n-linear form. If B is obtained from A by aProposition 2.40

row operation of type I (i.e. swapping rows), then δ(B) = −δ(A).

Proof. For (1), it is enough to show that swapping the first two rows changes the
sign of δ(A). Suppose B is obtained by swapping rows 1 and 2 of A. Then
δ(A + B) = 0, since then the first two rows will be equal. On the other hand,
δ(A + B) = δ(A) + δ(B) by n-linearity, so in particular δ(A) = −δ(B).

2.17 Existence of the Determinate
There exists a unique alternating linear form δ such that δ(In) = 1, and this
is called the determinate.

Before we prove this, we’ll need to study permutations for a minute. For π ∈ Sn,
the symmetric group, we let #π denote the number of pairs i, j ∈ [1, n] such that
i < j but π(i) > π(k). Such pairs of i, j are called inversions. We say that π is even
or odd if #π is even or odd, respectively. Furthermore, we can express the sign of
π as sgn(π) := (−1)#π.

Observe now that sgn : Sn → ({−1, 1},×) is a group homomorphism, which is −1
on transpositions, i.e. π ∈ Sn which swap any two elements. In particular, we have

1. sgn(π−1) = sgn(π).

2. If π is a composition of k transpositions, τ1, ..., τk , then sgn(π) = (−1)k .

For a proof of (1), we observe that sgn(π−1) = (sgn(π))−1 = sgn(π). For (2), we
have sgn(π) = sgn(τ1 · ... · τk) = sgn(τ1) · ... · sgn(τk) = (−1)k .

We first note that any alternating multilinear form δ can be written as

δ(A) =
∑
π∈Sn

a1π(1) · ... · anπ(n)δ(πIn) πIn := (eπ(1), ..., eπ(n))

and get as a corollary to the properties of sgn described above:

For δ : Mn(F)→ F alternating, A ∈ Mn(F), we haveProposition 2.41

δ(A) =
∑
π∈Sn

a1π(1) · ... · anπ(n)sgn(π)δ(In)

Proof.
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We just need to show δ(πIn) = sgn(π)δ(In). But δ = τ1 ·...·τn, so (−1)k = sgn(π),
and we conclude δ(πIn) = (−1)kδ(In) = sgn(π)δ(In).

We now turn to the main proof of the theorem:

Proof.Existence: We write det(A) :=
∑

π∈Sn
sgn(π)a1π(1) · ... · anπ(n)

Normalized: det(In) =
∑

π∈Sn
sgn(π)a1π(1) · ... · anπ(n) = (−1)0 · 1 · ... · 1

n times

.

Multilinear: Note that any linear combination of a mlf is a mlf, so we just
need to show that δ(A) := a1π(1) · ... · anπ(n) for some fixed π ∈ Sn is multilinear,
but we have shown this before.

Alternating: Suppose A has A(1) = A(2). We partition Sn into the disjoint union
of even and odd permutations, denoting the set of even ones as An, and noting
that Sn \ An = (12) × An = (12). Thus π′ : An → (12) that takes π→ π(12) is
a bijection, and we write

det(A) =
∑
Sn

sgn(π)a1π(1) · ... · anπ(n)

=
∑
An

sgn(π)a1π(1) · ... · anπ(n) + sgn(π′)

−sgn(π)

a1π′(1)

a1π(2)

a2π(2)

· a2π′(2)

a2π(1)

a2π(2)

·... · anπ′(n)

= 0

We then get the following corollaries: Proposition 2.42

(1) det(A) = 0 ⇐⇒ A is non-invertible (3) det(A−1) = (det(A))−1

(2) det(AB) = det(A) det(B) (4) det(At) = det(A)
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III Diagonalization
We will now begin to study the decomposition of T : V → V into a direct sum
of simpler operators, where dim(V ) < ∞. In this chapter, all vector spaces V
are finite dimensional, unless otherwise stated. The ”simplest” linear operator
is scalar multiplication, so, ideally, we’d like to decompose V into a direct sum
V1 ⊕ ...⊕ Vk of T -invariant subspaces, where TVi

: Vi → Vi is scalar multiplication.

For V1, ..., Vk ⊆ V , we say that {V1, ..., Vk} are linearly independent if Vi ∩ (V1 + ... +
Vi−1 + Vi+1 + ... + Vk) = {0} ∀i. If this is linearly independent, we call V1 + ... + Vk

direct, and write V1 ⊕ ... ⊕ Vk instead.

Call T : V → V diagonalizable if it admits a diagonalization, i.e. V = V1 ⊕ ... ⊕ Vk ,
where Vi ⊆ V are subspaces, and T |Vi

defines scalar multiplication by λi ∈ F.

Examples: If A is diagonal, i.e. A =

λ1
. . .

λn

, then A is diagonalizable: take

Vi := Span(ei). Then Fn = V1 ⊕ ... ⊕ Vn, and see that LA(v) = λiv ∀v ∈ Vi .

Now let B be similar to the diagonal matrix A as above. Then B = QAQ−1 for
some Q ∈ GLn(F). But all invertible matrices are change of basis matrices, i.e.
[I]βα, where α := Stn, and β = {v1, ...., vn} is some other basis for Fn. Letting
Vi := Span(vi), we have Fn = V1 ⊕ ... ⊕ Vn and LB(v) = λiv ∀v ∈ Vi .

Let dim(V ) < ∞. A linear operator T : V → V is diagonalizable ⇐⇒ ∃ a basisProposition 3.1

β ⊆ V such that [T ]β is diagonal.

Proof.
( =⇒ ) Let V = V1 ⊕ ... ⊕ Vk be such that TVi

defined scalar multiplication
by λi . Let βi ⊆ Vi be a basis for Vi . It is easy to verify that β := β1 ∪ ... ∪ βk
is a basis for V . But for each v ∈ β, v ∈ βi for some i, so T (v) = λiv, and
[T (v)]β = ⟨0, ..., 0, λi , 0, ..., 0⟩. Thus, we can order β such that [T ]β is diagonal,
and we are done.

(⇐= ) Let [T ]β be diagonal with elements λ1, ..., λn for β = {v1, ..., vn} ⊆ V , a
basis for V . Then, taking Vi := Span(vi), [T (v)]β = λiei = λ[v]β = [λiv]β ∀v ∈
Vi . Since v → [v]β is injective, we conclude that T (v) = λiv ∀v ∈ Vi . Remark

also that
n⊕
i=1

Span(vi) = V for basis vectors vi .

For T : V → V , λ ∈ F, λ is called an eigenvalue if T if ∃v ∈ V such that T (v) = λv,
where v , 0. In this event, v is called an eigenvector corresponding to λ.
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For a finite dimensional vector space V and a linear transformation T : V → V , Proposition 3.2

the following are equivalent:

1. T is diagonalizable, i.e. V = V1 ⊕ ... ⊕ Vk where T |Vi
is scalar multiplication

2. There exists a basis β ⊆ V such that [T ]β is diagonal

3. There exists a basis β ⊆ V containing eigenvectors of T

Proof.

2 =⇒ 3. Let β := {v1, ..., vn} be a basis for V such that [T ]β =

λ1
. . .

λn

.

Then [T (vj )]β = λjej , so T (vj ) = λjvj , and hence vj is an eigenvector.

3 =⇒ 2. Let β := {v1, ..., vn} be a basis for V where T (vj) = λjvj for λj ∈ F.

Then [T (vj )]β = [λjvj ]β = λjej , so in particular [T ]β =

λ1
. . .

λn


For A ∈ Mn(F), A is diagonalizable ⇐⇒ ∃Q ∈ GLn(F) such that Q−1AQ is Proposition 3.3

diagonal. The columns of Q are then eigenvectors which form a basis for Fn.

Proof.We know that A is diagonalizable ⇐⇒ there is a basis β ⊆ Fn such that [LA]β
is diagonal. But, letting α := Stn, we have that A = [LA]α = [I]αβ · [LA]β · [I]βα =

[I]αβ · [LA]β · ([I]αβ )−1, so [LA]β = ([I]αβ )−1A[I]αβ , so denoting Q := [I]αβ , and we

get Q−1AQ is diagonal.

Note that the columns of Q are exactly the vectors in β, which are hence
eigenvectors, as previously shown.

For an eigenvalue λ ∈ F for a linear operator T : V → V , let

EigT (λ) := {v ∈ V : T (v) = λv}

be called the eigenspace of T corresponding to λ. Observe that this is a subspace
of V , and that all non-zero vectors in it are exactly the eigenvectors of T corre-
sponding to λ.

It is true that, if T is diagonalizable, then V decomposes into a direct sum V =⊕
n
i=1Vi of subspaces of eigenspaces. Does each Vi have to be an eigenspace itself?

How many eigenvalues and eigenspaces might T have? Since diagonalizability is
conjugate-invariant (i.e. if A ∼ B and A is diagonalizable, then so is B), it makes
sense to study other conjugation-invariant functions on matrices.

The trace and determinate functions Mn(F)→ F are conjugation-invariant. Proposition 3.4
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This allows us to contextualize the trace and determinate for transformations.
Let V be n-dimensional and T : V → V be linear. Define tr(T ), the trace of T ,
to be tr([T ]β) for some, or any, basis β ⊆ V . This is well-defined, as we can shift
between bases using the change of bases matrices, i.e. [T ]β ∼ [T ]α for bases α, β.
Similarly, the determinate of T is det([T ]β) for any basis β, and this is well-defined
for the same reasons.

Observe now that T is invertible ⇐⇒ det(T ) , 0, where T : V → V is a linear
operator over n-dimensional V .

Proof. T invertible ⇐⇒ [T ]β is invertible ⇐⇒ det([T ]β) , 0 ⇐⇒ det(T ) , 0.

Let T : V → V be a linear operator on finite dimensional V . ThenProposition 3.5

1. v ∈ V is an eigenvector of T corresponding to λ ∈ F ⇐⇒ v ∈ ker(λI − T ).

2. λ ∈ F is an eigenvalue of T ⇐⇒ λI − T is non-invertible, i.e. det(T ) , 0.

Proof. T (v) = λv ⇐⇒ T (v) − λv = 0 ⇐⇒ (T − λI)v = 0 ⇐⇒ v ∈ ker(T − λI)

Now, λ is an eigenvalue ⇐⇒ ker(λI − T ) , {0} ⇐⇒ λI − T is not injective.
Since λI − T is a linear operator, λI − T is not injective ⇐⇒ λI − T is not
surjective, i.e. non-invertible.

As a corollary, we see that λ ∈ F is an eigenvalue of A ∈ Mn(F) ⇐⇒ det(λIn −
A) = 0. Thus, to find the eigenvalues, we need to find the roots of the function
p(t) = det(tIn −A). This can be written as pA(t) := tn − tr(A)tn−1 + ...+ (−1)n det(A)
(some messy form). We define pT (t) = det(tI − T ) similarly.

Since we’ve shown that the eigenvalues of T are precisely the roots of pT (t),
which has degree n, there can be at most n eigenvalues of T for T : V → V and
dim(V ) = n.

Let λ1, ..., λk be distinct eigenvalues for T : V → V . Then, if vi ∈ EigT (λi),Proposition 3.6

{v1, ..., vk} is linearly independent. In particular, k ≤ n.

Proof. We’ll show this by induction. This clearly holds for the base case, k = 1, since
v1 , 0 is an eigenvalue. Let k → k + 1, i.e. {λ1, ..., λk} is linearly independent.
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We then let ai , 0, and write

a1v1 + ... + akvk + ak+1vk+1 = 0

=⇒ T (a1v1 + ... + akvk + ak+1vk+1) = 0

=⇒ a1T (v1) + ... + akT (vk) + ak+1T (vk+1) = 0

=⇒ λa1v1 + ... + λkakvk + λk+1ak+1vk+1 = 0

=⇒ (λ1 − λk+1)a1v1 + ... + (λk − λk+1)akvk = 0

By our ind. hyp., λi = λk+1 ∀i, but we chose λi to be distinct, so  , and
ai = 0

For distinct λ1, ..., λk and T : V → V , {Eig(λ1), ...,Eig(λn)} are linearly indepen- Proposition 3.7

dent.

Proof.Let v1 ∈ Eig(λ1) ∩ (Eig(λ2) + ... + Eig(λk)). Then v1 = v2 + ... + vk for vi ∈
Eig(vi) i , 1. However, if vi are all nontrivial, then we’d violate Prop. 3.6, and
so v1 = 0.

For an eigenvalue λ for T : V → V , denote by mg(λ) := dim(EigT (λ)), and call
this the geometric multiplicity.

For T : V → V with eigenvalues λ1, ..., λk , we have Proposition 3.8

k∑
i=1

mg(λi) ≤ n

Proof.k∑
i=1

mg(λi) = dim

 k⊕
i=1

EigT (λi)

 ≤ n

3.1 Diagonalizability Condition
T : V → V is diagonalizable if and only if

∑
i∈Img(λi) = n, where {λi}i∈I

represents all eigenvalues of T .

Proof.( =⇒ ) Recall that T : V → V is diagonalizable ⇐⇒ ∃ a basis of eigenvectors
for V . Let β := {v1, ..., vk} be such a basis. Then vi ∈ Eig(λj ) for some j, so β ⊆
∪ki=1Eig(λi). Furthermore, we know that β ∩ Eig(λj ) is linearly independent,
since β is. Thus, |β∩Eig(λj )| ≤ dim(Eig(λj )) = mg (λj ) =⇒ n = |β| =

∑ k
i=1|β∩

Eig(λi)| ≤
∑ k

i=1mg(λi).
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But we’ve seen in Prop 3.8 that n ≥
∑ k

i=1mg(λi), so in fact n =
∑ k

i=1mg(λi)

(⇐= ) Suppose n =
∑ k

i=1mg (λi), and let βi be a basis for Eig(λi). By the linear
independence of eigenspaces (Prop 3.7), β := ∪ki=1βi is linearly independent.
This has n elements, so it is a basis for V . In particular, βi are made up of
eigenvectors for T .

For T : V → V and an eigenvalue λ, define the algebraic multiplicity, denoted
ma(λ), to be the largest k such that (t − λ)k |pT (t), i.e. the multiplicity of λ.

Let T : V → V . For each T -invariant W ⊆ V , let TW := T |W : W → W . Then pTWProposition 3.9

divides pT (t).

For each eigenvalue λ of T : V → V , mg(λ) ≤ ma(λ).Proposition 3.10

Proof. Let W := Eig(λ). This is T -invariant, since TW is just scalar multiplication by
λ. Thus, by the previous proposition, pT (t) = pTW (t)q(t) for some q(t) ∈ F[t].
We fix a basis α = {v1, ..., vl} for W , and observe that

[TW ]α =

λe1 · · · λel

 =

λ . . .
λ


Thus, pTW (t) = det(tIl − [TW ]α) = det

t − λ . . .
t − λ

 = (t − λ)l . Hence,

pT (t) = (t − λ)lq(t), so ma(λ) ≥ l = dim(W ) = mg(λ).

For a polynomial p(t) ∈ F[t], we say that p splits over F if p(t) = a(t − r1) · ... · (t − rn)
for a, ri ∈ F. For an eigenvalues λ1, ..., λk of T , we see that the characteristic
polynomial pT (t) splits ⇐⇒

∑ k
i=1ma(λk) = n. Thus:

3.2 Main Criterion
T : V → V is diagonalizable if and only if pT (t) splits and ma(λ) = mg(λ)
for each eigenvalue λ of T .

t cyclic spaces

Let V be a vector space, T : V → V linear, v ∈ V . The T-cyclic subspace generated
by v is defined to be Span({v, T (v), ...}) = Span({T n(v) : n ∈ N}). Observe that
T -cyclic subspaces are T -invariant.

Let V be s.t. dim(V ) = k, T : V → V , v ∈ V . Let W be the T -cyclic subspacesLemma (C-H)

generated by v. Then
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(a) {v, ..., T k−1} is a basis for W

(b) T k(v) = a0v + ... + ak−1T
k−1(v) ai ∈ F, so we conclude

pTW (t) = tk − ak−1t
k−1 − ... − a1t − a0

3.3 Caley-Hamilton Theorem
Let dim(V ) ≤ ∞, T : V → V linear. Then

pT (T ) = T n − an−1T
n−1 − ... − a0I = 0V

i.e. pT (T ) is the zero operator on V .

For A ∈ Mn(F), pA(A) = 0M . Proposition 3.11
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IV Orthogonality

inner products

For a vector space V over F, an inner product is a binary function V × V → F
which sends (u, v) → ⟨u, v⟩. Accordingly, we define an inner product space V to
be a vector space over F equipped with the ⟨·, ·⟩ operation. Typically, and for the
remainder of these notes, F will be understood to be R or C.Unless otherwise specified,

all sets V are understood to
be inner product spaces. Let u, v, w ∈ V , α ∈ F. Inner products satisfy the following axioms:

(i) ⟨u + v, w⟩ = ⟨u, w⟩ + ⟨v, w⟩

(ii) ⟨αu, v⟩ = α ⟨u, v⟩

(iii) ⟨u, v⟩ = ⟨v, u⟩, where · is the complex conjugate

(iv) ⟨u, u⟩ ≥ 0, and ⟨u, u⟩ = 0 ⇐⇒ u = 0

Let ⟨·, ·⟩ be an inner product on V . The norm associated with ⟨·, ·⟩ is defined to be
||v|| =

√
⟨v, v⟩ for each v ∈ V . We call v ∈ V a unit vector if ||v|| = 1. For v , 0, we

call ||v||−1v the normalization of v.

Let V be an inner product space, u, v, w ∈ V , α ∈ F. Then:Proposition 4.1

(a) ⟨u, v + w⟩ = ⟨u, v⟩ + ⟨u, w⟩

(b) ⟨u, αv⟩ = α ⟨u, v⟩

(c) ||αv|| = |α|||v||

(d) ⟨v, 0⟩ = ⟨0, v⟩ = 0

(a) and (b) follow from axiom (iii), and one shows (c) by writing ||αv||2 = |α|2||v||2.

Examples:

(a) For V := Fn, the standard ⟨·, ·⟩ is the dot product, which, for x⃗, y⃗ ∈ Fn, is
defined to be x⃗ · y⃗ =

∑ n
i=1xiyi . One shows that

〈
x⃗, y⃗

〉
:= x⃗ · y⃗ indeed defines

an inner product. Its associated norm is thus ||x⃗|| =
√∑ n

i=1|xi |2, which is the

Euclidean norm!

(b) For F = R and V = Fn, we have x⃗ · y⃗ = ||x||||y|| cos(α), where α is the angle
from x⃗ to y⃗.

(c) If ⟨·, ·⟩ is an inner product, then ⟨·, ·⟩r = r ⟨·, ·⟩ is also a valid inner product.
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(d) For V = C[0,1] and f , g ∈ V , we define ⟨f , g⟩ =
1∫

0
f (t)g(t)dt. This is an

inner product.

(e) For A ∈ Mm×n(F), let A = (aij ). A∗ = A
t

is called the conjugate-transpose of A.
Now, for V = Mn(F), A, B ∈ V , ⟨A, B⟩ := tr(B∗A) is an inner product.

Projections and Cauchy-Schwarz

Let V be an inner product space. Call u, v ∈ V orthogonal, and write u ⊥ v, if
⟨u, v⟩ = 0. For example, in R3 under the dot product, (1, 0,−1) ⊥ (1, 0, 1).

4.1 Pythagoras
Let V be an ips and u, v ∈ V be s.t. u ⊥ v. Then

||u|||2 + ||v||2 = ||u + v||2

and ||u||, ||v|| ≤ ||u + v||.

Proof.||u + v||2 = ⟨u + v, u + v⟩ = ⟨u, v⟩
0

+ ⟨v, u⟩
0

+ ⟨u, u⟩ + ⟨v, v⟩ = ||u||2 + ||v||2

For u, v ∈ V with ||u|| = 1, define the projection of v onto u to be proju(v) = ⟨v, u⟩ u.

For u ∈ V with ||u|| = 1, v − proju(v) ⊥ u ∀v ∈ V . In particular, v = proju(v) + w, Proposition 4.2

where w := v − proju(v) and w ⊥ u.

Proof.〈
v − proju(v), u

〉
= ⟨v, u⟩−

〈
proju(v), u

〉
= ⟨v, u⟩−⟨v, u⟩ ⟨u, u⟩ =

�������:0
⟨v, u⟩ − ⟨v, u⟩.

For u ∈ V with ||u|| = 1, ||proju(v)|| ≤ ||v|| ∀v ∈ V .

Proof.proju(v) ⊥ w, where w = v−proju(v), and hence ||proju(v)|| ≤ ||proju(v)+w|| =
||v|| by Pythagoras, as desired.

4.2 Cauchy-Schwarz

|
〈
x, y

〉
| ≤ ||x||||y|| x, y ∈ V

Proof.
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If ||y|| = 0, then we are done, so suppose otherwise, and divide both sides. We
then need to show |

〈
x, ||y||−1y

〉
| ≤ ||x||, but | ⟨x, u⟩ | = || ⟨x, u⟩ u|| = ||proju(x)|| ≤

||x||, where u := ||y||−1y is a unit vector.

4.3 Triangle Inequality

||x + y|| ≤ ||x|| + ||y|| x, y ∈ V

Proof. (T. Tao) ||x + y||2 =
〈
x + y, x + y

〉
= ⟨x, x⟩ +

〈
x, y

〉
+

〈
y, x

〉
+

〈
y, y

〉
leq||x||2 + ||y||2 + 2|

〈
x, y

〉
| ≤ ||x||2 + ||y||2 + 2||x||||y|| = (||x|| + ||y||)2, so especially

||x + y|| ≤ ||x|| + ||y||.

Examples: For V = Fn under the dot product, Cauchy-Schwarz says that∣∣∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣∣∣ ≤
√√

n∑
i=1

|xi |2
√√

n∑
i=1

|yi |2

For f , g ∈ C[0, 1] := V , we similarly find

1∫
0

f (t)g(t) ≤

√√√√√√ 1∫
0

|f (t)|2

√√√√√√ 1∫
0

|g(t)|2

Define d(u, v) := ||u − v|| = ||v − u|| to be the distance metric on V , i.e. d : V × V →Proposition 4.3

[0,∞) is s.t.

(i) d(u, v) ≥ 0, and d(u, v) = 0 ⇐⇒ u = v

(ii) d(u, v) = d(v, u)

(iii) d(u, w) ≤ d(u, v) + d(v, w)

Proof. Axioms (i) and (ii) are trivial to verify. For (iii), note that d(u, w) = ||u − w|| =
||u − v + v −w|| ≤ ||u − v||+ ||v −w|| = d(u, w) + d(v, w) (i.e., we use the triangle
inequality to prove the triangle inequality!).

(Parallelogram Law) For u, v ∈ V , we haveProposition 4.4

(a) 2||u||2 + 2||v||2 = ||u + v||2 + ||v − u||2

(b) ℜ(⟨u, v⟩) = 1
2

(
||u||2 + ||v||2 − ||v − u||2

)
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Orthonormality

Call S ⊆ V orthogonal if v ∈ S are pairwise orthogonal to eachother. If ||v|| =
1 ∀v ∈ S and S is orthogonal, we say that S is orthonormal.

Orthonormal sets are linearly independent. Proposition 4.5

Proof.Let S be orthonormal, and a1v1 + ... + anvn = 0 for vi ∈ S, as usual. Then
⟨a1v1 + ... + anvn, vi⟩ = ⟨0, xi⟩ = 0. But, by linearity of the first coordinate of
inner products, we write

n∑
j=1

aj
〈
vj , vi

〉
= ai ⟨vi , vi⟩ = ai ||vi ||2 = 0

by the orthogonality of S. Since ||vi ||2 = 1, this means ai = 0.

A basis for V is called an orthonormal basis if it is orthonormal.

Example: For V = Fn, Stn is orthonormal w.r.t. the dot product. Indeed,
〈
ei , ej

〉
=

δij , and ||ei || = 1. For V = F4, see that α := {(1, 0, 1, 0), (1, 0,−1, 0), (0, 1, 0, 1), (0, 1, 0,−1)}
is an orthogonal basis. We normalize each vector (i.e. multiply by 1√

2
) to create an

orthonormal basis.

Let β := {u1, ..., un} be an orthonormal basis for V . Then Proposition 4.5

(a) For every v ∈ V , the coordinates of v ∈ β are ⟨v, ui⟩, i.e.

v = ⟨v, u1⟩ u1 + ... + ⟨v, un⟩ un = proju1
(v1) + ... + projun

(vn)

These coordinates are called Fourier coefficients

(b) For T : V → V , we have [T ]β =
(〈
T (ui), uj

〉)
i,j

, i.e.

[T ]β =


⟨T (u1), u1⟩ · · · ⟨T (un), u1⟩

...
. . .

...

⟨T (u1), un⟩ · · · ⟨T (un), un⟩


Proof.For (a), let v = a1u1 + ... + anun be the representation of v ∈ β. Then observe

that ⟨v, ui⟩ =
∑ n

j=1aj
〈
uj , ui

〉
=

∑ n
j=1ajδij = ai .
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For (b), notice that the j th column of [T ]β is

[T (uj )]β =
(〈
T (uj ), u1

〉
, ...,

〈
T (uj ), un

〉)
For S ⊆ V , v ∈ V , we say that v is orthogonal to S if v ⊥ s ∀s ∈ S. Remark that
v ⊥ V ⇐⇒ v = 0.

Let α := {u1, ..., uk} be orthonormal. For each v ∈ V , the vector projα(v) :=Lemma (G-S) ∑ n
i=1projui

(v) =
∑ n

i=k ⟨v, ui⟩ ui has the property that v − projα(v) ⊥ α. In particu-
lar, v − projα(v) ⊥ projα(v). Thus, we can decompose v into projα(v) + orthα(v),
where orthα(v) := v − projα(v), and projα(v) ⊥ orthα(v).

Proof. Let uj ∈ α. Then〈
v − projα(v), uj

〉
=

〈
v, uj

〉
−
〈
projα(v), uj

〉
=

〈
v, uj

〉
−
〈 k∑
i=1

⟨v, ui⟩ ui , uj
〉

=
〈
v, uj

〉
−

k∑
i=1

⟨v, ui⟩
〈
ui , uj

〉

=
〈
v, uj

〉
−

k∑
i=1

〈
v, uj

〉
δij =

〈
v, uj

〉
−
〈
v, uj

〉
= 0

4.4 Gram-Schmidt Process
There exists and algorithm that takes in an input β := {v1, ..., vk} of linearly
independent vectors, and outputs an orthonormal set α := {u1, ..., uk} such
that Span(β) = Span(α). It’s lth step is as follows:

{u1, ..., ul−1} is orthonormal. Then let v′l := vl−proj{u1,...,ul−1}(vl), and ul := v′l
||v′l ||

.

=⇒ {u1, ..., ul} is orthonormal.

Proof. By the lemma above, we know that v′l := vl − proj{u1,...,ul−1}(vl) ⊥ {u1, ..., ul−1}.
We normalize v′l as above to conclude that ||u′l || = 1 and ul ⊥ {u1, ..., ul−1}.
Thus, {u1, ..., ul} is orthonormal, as desired.

As a corollary, we see that a basis {v1, ..., vn} is turned into an orthonormal basisProposition 4.6

{u1, ..., un}. Thus, every finite-dimensional vector spaces has an orthonormal basis.

Proof.
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{u1, ..., un} is orthonormal and thus linearly independent. Since it has n ele-
ments, i.e. |{v1, ..., vn}|, it is a basis.

For an inner product space V , S ⊆ V , the orthogonal compliment of S is the
subspace S⊥ := {v ∈ V : v ⊥ S} = {v ∈ V : v ⊥ s ∀s ∈ S}.

It is easy to check that S⊥ is a subspace of V (even if S isn’t): ⟨v + αw, s⟩ =
⟨v, s⟩ + α ⟨w, s⟩ = 0 =⇒ v + αw ∈ S⊥. Previously, we denoted by

S⊥ the annihilator of S, i.e.
S⊥ ⊆ V ∗. It is tempting to
call our new definition an
abuse of notation. However,
this is standard, as (later
we’ll see) {v ∈ V : v ⊥ S}
and {f ∈ V ∗ : f |S = 0} are
analogs in many respects.

4.5 Orthogonal Decomposition of V
Let V be an inner product space, and let W ⊆ V be finite-dimensional.

(a) For v ∈ V , there exists a unique decomposition v = w + w⊥, where
w ∈ W , w⊥ ∈ W⊥. We call w the orthogonal projection of v onto W , and
write w = projW (v).

(b) V = W ⊕W⊥. In particular, if dim(V ) < ∞, then dim(V ) = dim(W ) +
dim(W⊥).

Proof.For (a), let α := {w1, ..., wk} be an orthonormal basis for W , and let w =
projα(v). Then w⊥ := v − w is orthogonal to α, and hence orthogonal to
Span(α) = W . Existence //

Suppose w + w⊥ = v = w′ + w′⊥. Since v − w and v − w′ ∈ W⊥, so does their
difference =⇒ v − w − v + w′ = w′ − w ∈ W⊥, as W⊥ is a subspace. But
w′ − w ∈ W as well, so w′ − w = 0 =⇒ w′ = w. Since v = w′ + w′⊥ = w + w⊥,
we conclude w′⊥ = w⊥ as well. Uniqueness //

For (b), we already know V = W +W ′ by (a). It remains to show that W ∩W ′ =
{0}, but clearly if w ∈ W,w ∈ W ′, then w = 0.

As an immediate corollary, we see that if α, β are two orthonormal basis for
finite-dimensional W ⊆ V , then projα(v) = projβ(v) ∀v ∈ V , since projW (v) is
unique.

4.6 projW (v) minimizes distance to W
For finite-dimensional W ⊆ V and some v ∈ V , projW (v) is the unique,
closest vector to v ∈ W .

Proposition 4.7(a) projW (v) : V → V is a linear operator.

(b) A linear operator T : V → V is a projection onto Im(T ) ⇐⇒ ker(T ) =
Im(T )⊥.



MATH 251 Class Notes 54

(c) For an inner product space V and W ⊆ V , (W⊥)⊥ = W .

Proof. We’ll only show part (c). By definition, we know W ⊆ (W⊥)⊥. Now let v ∈
(W⊥)⊥. Then v = w + w⊥ for some w ∈ W , w⊥ ∈ W⊥ by Thm 4.5. Then

||v||2 = ⟨v, v⟩ = ⟨v, w + w⊥⟩ = ⟨v, w⟩ +�����:0⟨v, w⊥⟩

= ⟨v, w⟩ = ⟨w⊥ + w, w⟩ =�����:0⟨w⊥, w⟩ + ⟨w, w⟩ = ⟨w, w⟩ = ||w||2

By Pythagoras, ||v||2 = ||w||2 + ||w⊥||2, so ||w⊥||2 = 0 =⇒ w⊥ = 0, so v = w, and
especially v ∈ W .

Let V be an inner product space. For w ∈ V , we define the linear functional
fw ∈ V ∗ s.t. fw(v) = ⟨v, w⟩. One verifies that this is linear.

4.7 Riesz Representation Theorem
Let V be finite-dimensional. Then for each f ∈ V ∗ ∃ a unique w ∈ V s.t.
f = fw, i.e. f (v) = ⟨v, w⟩ ∀v ∈ V .

Proof. Existence: fix f ∈ V ∗, and let β := {v1, ..., vn} be an orthonormal basis for V .
For each v ∈ V , we know that

v = ⟨v, v1⟩ v1 + ... + ⟨v, vn⟩ vn

Hence, f (v) = ⟨v, v1⟩ f (v1) + ... + ⟨v, vn⟩ f (vn) =
〈
v, f (v1)v1 + ... + f (vn)vn

〉
.

Independence: Suppose fw1
= fw2

= f . Then fw1−w2
= fw1

− fw2
= 0, so fw1−w2

=
⟨v, w1 − w2⟩ = 0 =⇒ w1 − w2 = 0 =⇒ w1 = w2.

4.8 Adjoint Existence
Let dim(V ) < ∞. For T : V → V , ∃ a unique linear operator T ∗ : V → V ,
called the adjoint, such that ⟨T (v), w⟩ = ⟨v, T ∗(w)⟩ ∀v, w ∈ V .

Proof. For w ∈ V , define f̃w ∈ V ∗ as f̃w(v) = ⟨T (v), w⟩. This is indeed a linear
functional on V . By Riesz representation, ∃ a unique w̃ ∈ V s.t. f̃w = fw̃,
i.e. f̃w(v) = ⟨T (v), w⟩ = ⟨v, w̃⟩ ∀v ∈ V . Set T ∗(w) = w̃. Then T ∗ meets our
condition, and it remains to show that T ∗ is linear.

For w1, w2 ∈ V , a ∈ F, T ∗(aw1 +w2) is the unique vector s.t. ⟨T (v), aw1 + w2⟩ =
⟨v, T ∗(aw1 + w2)⟩. It is enough to show that aT ∗(w1) + T ∗(w2) also satisfies our
condition. But ⟨T (v), aw1 + w2⟩ = a ⟨T (v), w1⟩ + ⟨T (v), w2⟩ = a ⟨v, T ∗(w1)⟩ +
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⟨v, T ∗(w2)⟩ = ⟨v, aT ∗(w1) + T ∗(w2)⟩.

Let T : V → V be a linear operator on a finite-dimensional V . Let β be an Proposition 4.8

orthonormal basis for V . Then

[T ∗]β = [T ]∗β

where A∗ = A
t

(conjugate-transpose, sometimes called the adjoint of A). Further-
more, for A ∈ Mn(F), L∗A = LA∗ .

Proof.
Recall that, for [T ∗]β , where β = {v1, ..., vn}, the (ij)th entry is

〈
T ∗(vj ), vi

〉
=〈

T ∗(vj ), vi
〉

=
〈
vi , T ∗(vj )

〉
=

〈
T (vi), vj

〉
, which is the conjugate of the (ji)th

entry of [T ]β . Hence, [T ∗]β = [T ]tβ = [T ]∗β , as desired.

For the last statement, let β be the standard orthonormal basis. Then [L∗A]β is
B ∈ Mn(F) with LB = L∗A. By (a), B = [LA]∗β = A∗.

We observe the following properties of the adjoint: Proposition 4.9

(a) The function which sends T → T ∗ is conjugate-linear.

(a) (T1 + T2)∗ = T ∗1 + T ∗2
(b) (aT )∗ = aT ∗

(b) (T1 ◦ T2)∗ = T ∗1 ◦ T
∗
2

(c) I ∗V = IV

(d) If T is invertible, then so is T ∗, and (T ∗)−1 = (T −1)∗.

Let T : V → V be a linear operator and dim(V ) < ∞. Then Im(T ∗) = ker(T )⊥ and Proposition 4.10

ker(T ∗) = Im(T )⊥.

For T : V → V , dim(V ) < ∞, we have null(T ) = null(T ∗) and rank(T ) = rank(T ∗). Proposition 4.11

Proof.rank(T ∗) = dim(Im(T ∗)) = dim(ker(T )⊥) = n − dim(ker(T )) = rank(T )

null(T ∗) = dim(ker(T ∗)) = dim(Im(T )⊥) = n − dim(Im(T )) = null(T )

Let T : V → V be a linear operator for dim(V ) < ∞. For λ ∈ F, λ is an eigenvalue Proposition 4.12

of T ⇐⇒ λ is an eigenvalue of T ∗.

Proof.
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λ is an eigenvalue of T ⇐⇒ null(T −λI) > 0 ⇐⇒ null(T ∗−λI) > 0 ⇐⇒ λ
is an eigenvalue of T ∗.

4.9 Schur’s Lemma
Let T : V → V be a linear operator, dim(V ) < ∞. Then, if pT (t) splits, ∃ an
orthonormal basis β for V such that [T ]β is upper triangular.

Proof. Since pT (t) splits, T and T ∗ have eigenvalues. We will show the above by
induction on dim(V ) =: n. Let n = 1. Then clearly [T ]β is upper triangular.

n→ n + 1: Let λ be an eigenvalue of T ∗ and its corresponding eigenvector be
vn, i.e. T ∗(vn) = λvn. Let W := Span(vn). Then W⊥ is T -invariant: indeed, if
v ⊥ W , then w ⊥ vn, i.e. ⟨v, vn⟩ = 0. Then ⟨T (v), vn⟩ = ⟨v, T ∗(vn)⟩ = ⟨v, λvn⟩ =
λ ⟨v, vn⟩ = 0, so T (v) ⊥ vn.

dim(W⊥) = n − dim(W ) = n − 1, and TW⊥ : W⊥ → W⊥, so by induction, ∃ an
orthonormal basis α := {v1, ..., vn−1} of W⊥ s.t. [TW⊥]α is upper triangular.

Let β := {v1, ..., vn}. This is an orthonormal basis for V , since V = W ⊕W⊥.
Notice also that

[T ]β =


[TW⊥(v1)]α · · · [TW⊥(vn−1)]α [TW⊥(vn)]α

0 0


is upper triangular, since the first n − 1 columns are upper triangular by
assumption.

A linear operator T : V → V , where dim(V ) < ∞, is called normal if T and T ∗

commute, i.e. T ◦ T ∗ = T ∗ ◦ T . T is called self-adjoint if T = T ∗.

Examples:

1. Orthogonal projections are self-adjoint. Let W ⊆ V , and p be the projection
onto W . Fix u, v ∈ V . Then u = p(u) + u⊥ and v = p(v) + v⊥. Then observe
that ⟨p(u), v⟩ = ⟨p(u), p(v) + v⊥⟩ = ⟨p(u), p(v)⟩ +�����⟨p(u), v⊥⟩ = ⟨p(u), p(v)⟩.

Similarly, we find that ⟨u, p(v)⟩ = ⟨p(u), p(v)⟩, and so ⟨p(u), v⟩ = ⟨u, p(v)⟩,
i.e. p = p∗, as desired.

2. If p : V → V is an orthogonal projection, and λ ∈ C \ R, then (λp)∗ = λp ,
λp, so λp is not self-adjoint. However, λp is still normal: (λp) ◦ (λp)∗ =
(λp) ◦ (λp) = λ2p2 = (p) ◦ (λp) = (λp)∗(λp).
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3. Let V = W1 ⊕ ...Wk, where Wi ⊥ Wj ∀i , j. Then ∀λ1, ..., λk ∈ F, T :=
λ1projW1

+ ... + λkprojWk
is normal.

Let T : V → V be normal, and dim(V ) < ∞. Then Proposition 4.13

(a) ||T v|| = ||T ∗v|| ∀v

(b) p(T ) for any polynomial p is normal

(c) ∀v ∈ V , v is an eigenvector of T corresponding to λ ⇐⇒ v is an eigenvector
of T ∗ corresponding to λ

(d) For eigenvalues λ1 , λ2, Eig(λ1) ⊥ Eig(λ2)

A basis of V consisting of eigenvectors of T is called an eigenbasis of T .

4.10 Diagonalizability of Normal Operators on C
Let T : V → V be a linear operator over a finite-dimensional inner product
space V , where F := C. Then T is normal ⇐⇒ ∃ an orthonormal eigenbasis
of T .

Proof.( =⇒ ) Suppose T ◦ T ∗ = T ∗ ◦ T . Then T and T ∗ have eigenvalues (since
pT splits over C), and they are the same. As in Schur’s Lemma, let vn be
an eigenvalue of T /T ∗. By putting W := Span(vn), we have that W⊥ is T -
invariant, so one writes TW⊥ : W⊥ → W⊥. Furthermore, one can show that
TW⊥ is normal if T is normal. Then our induction hypothesis has that β :=
{v1, ..., vn−1} is an orthonormal eigenbasis for W⊥ =⇒ β′ := {v1, ..., vn} is an
orthonormal eigenbasis for V , since V = W ⊕W⊥.

( ⇐= ) Let β be an orthonormal eigenbasis for T . Then [T ]β is diagonal
(each vi would map to eiλi). Then [T ∗]β = [T ]∗β is also diagonal. Thus, since
diagonal matrices commute, [T ◦ T ∗]β = [T ]β[T ∗]β = [T ∗]β[T ]β = [T ∗ ◦ T ]β ,
and, as Iβ is a linear isomorphism, this mean T ∗ ◦ T = T ◦ T ∗, as desired

The eigenvalues of self-adjoint operators are always real. Proposition 4.13

Proof.Let T be self-adjoint, and λ be an eigenvalue. Then T (v) = λv. Since T is
normal, T ∗(v) = λv. But T ∗ = T , so λ = λ, i.e. λ ∈ R.

Characteristic polynomials of real, symmetric matrices split over R. Proposition 4.14

Proof.
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Let A ∈ Mn(R) and A = At. Thus, A = A∗, since conjugations are irrelevant in
R. Let LA : Cn → Cn by LA(v) = Av, as usual. Then L∗A = LA∗ = LA, so LA is
self-adjoint. Thus, pLA

splits over C. But the roots of pLA
are all real, so pLA

splits over R! Then we just observe that pLA
= p[LA] = pA.

As an immediate corollary, we see that, for self-adjoint T : V → V over R, pT
splits over R. As proof, we let β be an orthonormal basis. Then A := [T ]β is real.
Furthermore, At = A∗ = [T ]∗β = [T ∗]β = [T ]β , so A = At. From the proposition
above, pA = p[T ]β = pT splits over R.

4.11 Diagonalizability of Self-Adjoint Operators on R
Let T : V → V be a linear operator, where F = R. Then T is self-adjoint
⇐⇒ ∃ an orthonormal eigenbasis for T .

Proof. ( =⇒ ) Let T : V → V be self-adjoint. Then pT splits over R by the above.
Then, by Schur’s Lemma, ∃ an orthonormal basis β for V such that [T ]β is
upper triangular. Thus, [T ]tβ is lower triangular. But [T ]tβ = [T ]∗β = [T ∗]β =
[T ]β , so [T ]β is actually diagonal, i.e. β is made up of eigenvectors.

(⇐= ) Suppose ∃ an orthonormal eigenbasis β for T . Then [T ∗]β is real and
diagonal, and hence [T ∗]β = [T ]tβ = [T ]β , so T = T ∗, as desired.

The following theorem is the finale, in effect, of this course:

4.12 Spectral Theorem
Let V be finite-dimensional inner product space, and T : V → V be a linear
operator. If F = C, let T be normal. If F = R, let T be self-adjoint. Then T
admits a unique (up to reorderings) spectral decomposition, i.e.

T = λ1p1 + ... + λkpk

where pi are orthogonal projections such that IV = p1 + ... + pk , and pi ◦ pj =
δijpj . In other words, V =

⊕
n
i=1Im(pi), with Im(pi) ⊥ Im(pj ) ∀i , j.

Proof of Spectral Theorem

Let V be finite-dimensional, and p1, ..., pk be orthogonal projections on V . TFAE:Lemma 1

1. pi ◦ pj = 0 ∀i , j and IV = p1 + ... + pk

2. Im(pi) ⊥ Im(pj ) and
n⊕
i=1

Im(pi)

Proof.
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For i , j, pi ◦ pj = 0 ⇐⇒ pi ◦ pj(v) = {0} ∀v ⇐⇒ pi(Im(pj)) = {0} ⇐⇒
Im(pj ) ⊆ ker(pi) = Im(pi)⊥ ⇐⇒ Im(pi) ⊥ Im(pj ) //

( =⇒ ) IV = p1 + ... + pk ⇐⇒ v = p1v + ... + pkv ∀v =⇒ V =
⊕

n
i=1Im(pi),

since Im(pi) ⊥ Im(pj ) =⇒ Im(pi) ∩ Im(pj ) = {0}.

( ⇐= ) Take v ∈
⊕

n
i=1Im(pi). Then v = w1 + ... + wk, where wi ∈ Im(pi), so

pi(v) = pi(w1) + ... + pi(wk) =
∑ k

j=1δijwj = wi , hence v = p1(v1) + ... + pk(vk),
i.e. IV = p1 + ... + pk .

Spectral Decomposition via Eigenvalues:

Let T : V → V , dim(V ) < ∞, p1, ..., pk : V → V be orthogonal projections, and Lemma 2

λ1, ..., λk ∈ F. Then TFAE:

1. T = λ1p1 + ... + λkpk is a spectral decomposition.

2. {λ1, ..., λk} are all distinct eigenvalues of T and Im(pi) = EigT (λi) and
EigT (λi) ⊥ EigT (λj ) ∀i , j and V =

⊕
k
i=1EigT (λi).

Proof.(1 =⇒ 2) Denote Wi = Im(pi) and remark that Wi ⊆ EigT (λi). Indeed, if
wi ∈ Wi , then T (wi) = λipi(wi) = λiwi , as pi(wj ) = 0 ∀i , j. We can also write
V =

⊕
n
i=1Im(pi), so

∑
dim(Wi) = dim(V ) = n. Since Wi ⊆ EigT (λi), this

means
∑

dim(Eig(λi)) ≥ n, i.e. = n, as well. We conclude that Wi = Eig(λi).
Furthermore, since

∑
mg(λi) = n, we conclude that these are all the eigenval-

ues of T .

(2 =⇒ 1) Suppose pi ◦ pj = 0 ∀i , j and V =
⊕

k
i=1EigT (λi). Since⊕

k
i=1Im(pi) as well, we have IV = p1 + ... + pk by Lemma 1.

Since v = w1 + ... + wk ∀v, where wi ∈ Eig(λi), we have pi(v) = wi ∀i , j,
since Eig(λi) ⊥ Eig(λj ). Then T (v) = T (w1) + ... + T (wk) = λ1w1 + ... + λkwk =
λ1p1(v) + ... + λkpk(v), i.e. T = λ1p1 + ... + λkpk

We have thus proven uniqueness of the spectral decomposition, since λ1, ..., λk

must all be the unique eigenvalues of T , and Im(pi) = EigT (λi).

As for existence, we have shown, for normal T , Eig(λi) ⊥ Eig(λj) ∀i , j. And,
if (F = C) or (F = R ∧ T = T ∗), then T admits and orthonormal eigenbasis,
i.e. V =

⊕
k
i=1EigT (λi). Then the conditions for Lemma 2 kick in, and hence

T = λ1p1 + ... + λkpk. Remark: The set {λ1, ..., λk} of T : V → V is called the
spectrum of T .

⌣
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