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Picard–Lindelöf Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 9

Lipschitz Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Second Order Equations 11

Constant Coefficient 11

Homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Non-Homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Principle of Superposition 13

Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Linear Independence and the Wronskian . . . . . . . . . . . . . . . . 14

Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 15

III Nth Order Equations 16

Constant Coefficient 16

Homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Non-Homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Fundamental Solution Sets 17

Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



contents

Abel’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Revisiting Variation of Parameters 18

Existence and Uniqueness 19

For Linear ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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MATH 325 – Ordinary Differential Equations

Some things of note:

All general ODE forms will be framed,

L[y] = g(x)

and all important theorems will be bubbled.

a2 + b2 = c2

We will be using linear differential operators throughout, denoted by L[y],
which “act” on equations resembling

y = a(x)Dn + b(x)Dn−1 + ... + z(x)

where D is the derivative.

For instance, homogeneous equations appear as L[y] = 0 and
non-homogeneous equations as L[y] = g(x).

“The proof for this will, of course,
be left as an exercise”

- Professor Hundemer

Copyright © 2023 Nicholas Hayek. All rights reserved.



5 first order equations

I First Order Equations
Here we go! First order differential equations are any equation which contains
first order derivatives. Just the same, if an equation contains any derivatives,
it is an ODE.

linear

Homogeneous

To be “homogeneous” is to have all terms containing y or its derivatives sum
to 0. Thus, consider the homogeneous ODE of the form

y′ + p(x)y = 0

Here, the general solution for y(x) will be

y(x) = Ce−
∫
p(x)dx

where C may be determined by plugging in initial values, i.e. y(x0) = y0. The
proof for this, like that of many formulas to come, can be found elsewhere.

Non-Homogeneous

A non-homogeneous ODE is of the similar form

y′ + p(x)y = g(x)

Here is a useful algorithm for finding y(x):

1. Let u(x) = e
∫
p(x)dx

2. Multiply the given ODE by u(x), yielding

u(x)y′ + u(x)p(x)y = g(x)u(x)

3. By math magic, this will always simplify to

d
dx

[u(x)y] = g(x)u(x)

4. You can thus integrate to get

u(x)y =
∫

g(x)u(x)dx

5. And finally

y =

∫
g(x)u(x)dx

u(x)
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...making sure to mind the C, when it comes up. This general form is
tedious to remember and employ, so using u(x), or an integrating factor,
is best practice.

nonlinear

The general form of a first order, nonlinear ODE is f (x, y) = y′ (but this does
not imply that the equation will be written explicitly).

Separable Equations

Our first nonlinear ODE may be familiar from your last calculus class:

dy

dx
= P (x)Q(y)

By rearranging each term such that dx and P (x) remain on one side of the
equation, while dy and Q(y) remain on the other, you can solve by integrating
as follows: [

1
Q(y)

]
dy = P (x)dx→

∫
1

Q(y)
dy =

∫
P (x)dx

Two constants will come out of each side—let’s call them k1 and k2—and these
can hence be combined to form one constant.

Exact Equations

Exact ODEs look like

• Mdx + Ndy = 0

or

• M + N
[
dx
dy

]
= 0

or

• M
[
dy
dx

]
+ N = 0

These are functionally identical forms, with the first equation being found
often in the wild. It may be tricky to spot one of the last two if you’re not
expecting it, though, as M and N may be functions of x, y, or both.

Very Exact

When considering an equation of one of the above forms, the following condi-
tion will help us immensely:

∂M
∂y

=
∂N
∂x
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If this does not turn out to be true, we’ll need to do a little more work. For Note: When you inte-
grate M and N , you will
end up with two constants,
k1(y) for M and k2(x) for
N , and these must be cho-
sen such that f1(x, y), de-
rived from M, and f2(x, y),
derived from N , are equiv-
alent.

now, though, let’s assume it is. Then, we have the following relation by math
magic:

M =
∂f

∂x
and N =

∂f

∂y

where f (x, y) = C, which can be found by integrating, satisfies the ODE.

Not Quite Exact

If, when you find My and Nx, they are not equivalent, it is possible to make
them equivalent using integrating factors. First, though, one the following
conditions must hold:

1. 1
N (My − Nx) is a function of x only

or

2. 1
M (My − Nx) is a function of y only

In the first case, let u(x) = e
∫ My−Nx

N dx. Otherwise, let u(y) = e−
∫ My−Nx

M dy . If
neither are true, then we give up.

Like our method for finding the solution to non-homogeneous linear ODEs,
multiplying our original equation by u(x) or u(y) will yield a “nicer” problem.
In this context, “nice” means that the multiplied equation is now exact!

Thus, let M̃ = u ·M and Ñ = u · N . Our new, exact equation is now

M̃dx + Ñ dy = 0

which we can solve.

Pseudo-Homogeneous Exact

ODEs as a subject has a major oversight, being that it works with two entirely
unrelated meanings of “homogeneous.” For our purposes, “homogeneous
ODE” will retain its base definition, that, in terms of differential operators,
L[y] = 0. Pseudo-homogeneity will then be defined as

N (tx, ty) = tdN (x, y) and M(tx, ty) = tdM(x, y)

where N and M are defined exactly as above.

If we have an ODE of the form Mdx + Ndy = 0 that is neither exact nor
capable of being made exact through integrating factors, it may be solved if M
and N are pseudo-homogeneous. In that event, let y = u(x) · x and make any
appropriate substitutions. The resulting ODE, u′ = f (x, u), will be separable.
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ABC Substitution

Consider a nonlinear ODE of the form

y′ = f (Ax + By + C) + k

where f may be any function (ex. eAx+By+C or [Ax + By + C]3) and B , 0.

A useful substitution in this case is u = Ax + By + C, which, when simplified,
will yield a separable equation.

Bernoulli Equations

Consider an ODE of the form

y′ + p(x)y = g(x)yn

This is a Bernoulli equation, and can be made into a much easier-to-solve
linear equation by using the following substitution:

v(x) = y1−n

After deriving a solution to the linear ODE, v(x), reversing the substitution
will give you a final expression for y(x), though some rearranging may be
necessary. Note that, for n = 0 and n = 1, the corresponding Bernoulli equation
is automatically linear.

When considering a Bernoulli IVP, it’s crucial to evaluate your constant after
undoing the substitution.

Picard Iteration

No matter the form of our nonlinear ODE, we may try solving it via Picard
Iteration, which, analogous to Taylor Series for functions, will provide an
increasingly accurate estimation for y(x). Consider the following relation,
where f (x, y) = y′ and y(x0) = y0:

yn+1 = y0 +

x∫
x0

f (t, yn(t))dt

The expression f (t, y0(t)) may seem a little confusing at first. To clarify, here
is a brief algorithm for finding it:

1. For your first iteration, let yn(t) be defined as y0, the initial condition.

2. In the expression f (x, y), replace all dependent variables y with the
initial condition, and swap all x’s with t’s.

3. Evaluate yn+1 to find your first iteration, and call it y1.
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4. For your next iteration, follow steps 1-3, with any dependent variables
in f (x, y) being replaced by y1 instead of y(x0).

Occasionally, a pattern will begin to emerge after repeated iterations, which,
though not rigorously, may suggest a general, summation form for y(x).

existence and uniqueness for first order odes

Intervals of Validity

Often, there are discontinuities in an ODE’s solution and its derivative. The
IOV for a particular solution depicts the “space” around an initial condition
such that these discontinuities are excluded, i.e. the solution is continuously
differentiable and the initial condition y(x0) = y0 is satisfied.

Before finding the appropriate IOV, it is useful to make a list of possible
intervals by eliminating certain values for x:

• If L[y] is linear, i.e. of the form y′ + p(x)y = g(x), the solution is contin-
uously differentiable in x so long as p(x) and g(x) are continuous in x.
Find these discontinuities, and remove them from the real line to yield a
collection of valid intervals. This means that a solution to the ODE is
not required to find its interval of validity.

• If L[y] is nonlinear, with y′ = f (x, y), we first have to show that there
exists a unique solution for a given initial condition1, the process for
which is shown in the next section. Once this is established, discontinu-
ities in y(x) may simply be removed from the real line to yield possible
intervals.

Once a set of intervals is found, the one which contains x0 is the appropriate
interval of validity, as shown below.

[ ] [ ] [
x0

I1 I2 I3...

I2 = the interval of validity for x0

Picard–Lindelöf Theorem

For nonlinear ODEs, finding y(x) does not necessarily imply that it is the only
solution. To prove the existence of a unique solution, we first must consider
f (x, y) and ∂f

∂y at y(x0) = y0.

If f (x, y) is continuous at x0 and ∂f
∂y is continuous at y0, then there exists

a unique solution to the ODE at y(x0) = y0.

This is called the Picard–Lindelöf theorem, the proof for which brought about
Picard iteration.

1In the case of linear ODEs, it is always true that a unique solution exists.



MATH 325 – Ordinary Differential Equations 10

Lipschitz Continuity

While the above theorem proves the existence and uniqueness of a solution
just fine, it is slightly overpowered. A special case of the “weaker” condition,
Lipschitz continuity, is sufficient. In ODEs, a function is Lipschitz continuous
on y if

|f (x, y1) − f (x, y2)| ≤ L|y1 − y2|

for any x, y1, y2 ∈ R and positive constant L.

Only certain Lipschitz constants, however, will truly satisfy the theorem. Let’s
define the following:

R = x ∈ [x0 − h, x0 + h] and y ∈ [y0 − b, y0 + b]

L = max
(x,y)∈R

∣∣∣∣∣∂f∂y
∣∣∣∣∣

M = max
(x,y)∈R

|f (x, y)|

If the inequalities below are satisfied, then so is Picard–Lindelöf:

Lh ≤ 1 and Mh ≤ b

In general, continuity of ∂f
∂y on y implies Lipschitz continuity of f (x, y) on y,

which, as a stronger form of continuity, implies ordinary continuity of f (x, y)
on y. These relations are strictly one-way. Below is a visualization of Lipschitz
continuity at a fixed “slice” of a function:

x0
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II Second Order Equations
constant coefficient

As it turns out, it is quite difficult to find solutions to second order ODEs that
diverge from a select few general forms, so for the next few pages we’ll only
consider equations whose derivatives are multiplied by real-valued constants.

Homogeneous

Second order, linear, constant coefficient, homogeneous ODE. That’s a lot of
words to describe a class of equations. Thankfully, though, they look pretty
simple. Consider the following equation:

ay′′ + by′ + cy = 0

where a, b, and c are all real-valued constants. To find an expressions for y(x),
we first have to derive the “characteristic equation”:

ar2 + br + c = 0

The roots that come out of this equation may be real, complex, or repeated.
Our “guess” for y(x) will depend on the type of roots of the characteristic
equation.

Real Roots

Let r1 and r2 be two real-valued roots of a given characteristic equation. Then,
the general form for y(x) is as follows:

yB(x) = c1e
r1x + c2e

r1x

Note that both c1e
r1x and c2e

r1x themselves are solutions to the ODE. In
general, second order ODEs will often have 2 or more solution that, together,
form a “basis of the solution space.” Now, and in future sections, we’ll refer to
these solutions as “complementary” solutions.

Complex Roots

In the event that your characteristic equation has complex-valued roots2, the
following will describe your basis of the solution space:

yB(x) = c1e
αx cos(βx) + c2e

αx sin(βx)

where α describes the Re part of your root and β describes the Im part.

Note that your set of roots, if complex, will follow the general form α ± βi

2If one root is complex, it is especially true that both roots are complex. You can convince
yourself of this by giving the quadratic equation a good stare.
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Repeated Roots

Finally, consider the case where your characteristic equation has a pair of
repeated roots, i.e. (r − rr )2 = 0. Then, the solution space is as follows:

yB(x) = c1e
rrx + c2xe

rrx

where rr is your repeated root.

Non-Homogeneous

Undetermined Coefficients

The only difference between the class of equations described above and these
are, notably, the g(x) that appears on the right-hand side. For the sake of
formality, here is what that looks like:

ay′′ + by′ + cy = g(x)

The general solution (i.e. basis of the solution space) for this class of equations
is

yB(x) = c1y1(x) + c2y2(x) + yp(x)

where the first two terms are complimentary solutions that can easily be
derived from the characteristic polynomial. The trouble comes, then, in the
yp(x), or the “particular solution,” which is solely dependent on the g(x) term.
There are limitations in finding explicit particular solutions, notably that the
g(x) from which it arises must be of a specific form. These forms are listed
below, along with the appropriate “guess” for what might be our particular
solution.

g(x) =


α · eβx

α · cos(βx)

α · sin(βx)

Any nth degree polynomial

→ yp(x) =


A · eβx

A · cos(βx) + B sin(βx)

A · cos(βx) + B sin(βx)

Axn + Bxn−1 + ... + Y x + Z

From here, I should note a couple tricks:

• If g(x) is made up of multiple functions, you may take appropriateFor example:
g(x) = 4e4x + t2 →
Ae4x + Bt2 + Ct + D

guesses for each to form a composite yp(x), made up of yp1
(x) and yp2

(x).

• Similarly, a g(x) comprised of multiplied terms from above corresponds
to the same guesses multiplied
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• When αeβx is multiplied by some other term in g(x), you may omit For instance:
If we encounter
g(x) = πe4t cos(5t),
we can proceed with our
guess for the last term
(see the chart above),
A cos(5t) + B cos(5t), and
then “tack on” on the ex-
ponential to yield yp(x) =
e4t(A cos(5t) + B cos(5t)).

the exponential term completely when finding a guess for yp(x). Once
a guess is made for terms excluding eβx, one can multiply it back in
without needing to consider any additional coefficients. Inevitably, if
one were to include a constant here, it would combine with all others
and become redundant.

• Notice that, for all constants α in g(x), our guess is not affected. Generally
speaking, constants on the outside of g(x) will have no bearing on our
solving algorithm for yp(x).

Once we are satisfied with our guess, which by now is full of unknown
constants, we may plug in appropriate derivatives into the original ODE,
since, as with y1(x) and y2(x), yp(x) must also be a solution to L[y] = g(x). By
collecting like terms, we will (with a lot of algebra) be able to determine all
unknown constants.

Now, suppose g(x) itself solves the homogeneous ODE, i.e. L[g(x)] = 0. In that
case, a whole host of problems begin to crop up. After all, we’re trying to form
an equivalency between our guess and g(x), and finding that 0 = g(x) is not so
helpful. Hence, choose the lowest integer n such that xn is not a solution to
the ODE and multiply it by your guess. This should, if done correctly, remedy
any L[g(x)] = 0 issues.

Finding undetermined coefficients in “guesses” of well-chosen expressions for
g(x) is both a highly methodical and limited process. A much stronger sledge-
hammer, “Variation of Parameters,” is better suited for finding complicated
particular solutions.

principle of superposition

As noted above, for any two complimentary solutions of a linear, second order
ODE, the following holds:

yB = c1y1 + c2y2

This is called the “Principle of Superposition.”

Reduction of Order

Suppose we’re only given one solution to L[y] = 0. Then, by the principle
of superposition, we should be able to find a relation between the known
solution, y1, and the unknown solution, y2. The method for finding this is
called the Reduction of Order, and here is the general algorithm you’ll need
to solve reduction of order questions:

1. Find an appropriate first solution, y1. This is usually provided.

2. It follows from the principle of superposition that y2(x) = u(x)y1(x) for
some function u(x).
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3. Calculate dy
dx and d2y

dx2 , where y = u(x) · y1(x) and y1 is written in termsNote: As in (4), any sec-
ond order ODE of the
form y′′(x) = f (x, y′) may
be reduced to the first or-
der with the like substitu-
tion, u(x) = y′(x). A sim-
ilar substitution, u(y) =
y′(y) will work for second
order autonomous ODEs
(i.e. y′′ = f (y, y′)), though
in this case we will yield

u′(y) = f (y,u)
u .

of x only.

4. By plugging these derivatives into L[y] = 0, we will yield a new ODE to
solve, which, with the substitution v = u′, will be separable.

5. Once an expression for u(x) is found, we can finally multiply this by y1
to yield our second solution to the ODE.

Linear Independence and the Wronskian

Some of you algebraically inclined might recognize yB as a linear combination
of y1 and y2. Thus, there is a notion of linear independence in our solution set,
where c · y1 may or may not be equal to y2.

For a pair of solutions, it is easy to check for linear independence by divid-
ing each equation to yield a (possible) constant, checking if the appropriate
multiple for one term in the solution set is appropriate for other terms, or any
such method to verify the existence of a scalar multiple. When comparing 3 or
more solutions, it is not so easy to determine linear independence. By using
the definition

c1y1(x) + c2y2(x) + ... + cnyn(x) = 0 with c1, c2, ..., cn = 0

⇐⇒ y1, y2, ..., yn is linearly independent

we may make our problem easier with a clever application of determinate
matrices.

Define the Wronskian as the following matrix:

W (y1, y2) =
∣∣∣∣∣y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣∣ = det
[
y1(x) y2(x)
y′1(x) y′2(x)

]
From our knowledge of linear algebra, we know that if detM = 0 for any
matrix, we have linearly dependence of its columns. This is not necessarily
true in the case of functions and the Wronskian, even though differentiation
is a fundamentally linear process. However, we do have the following:Note: Even if W = 0

for some x0 or collection
thereof, it may not be the
case for all x ∈ R that W =
0. Thus, only one chosen
xi is needed to prove inde-
pendence, while we would
have to compute an un-
countably infinite number
of Wronskians to show lin-
ear dependence.

W (y1, y2) , 0 =⇒ y1 and y2 are linearly independent

At its most basic, linear independence can be defined with the following:

c1y1 + c2y2 + ... + cnyn = 0 with c1, c2, ..., cn = 0

Hence, if there exists some non-zero collection of constants such that the
above inequality holds, then [y1, y2, ..., yn] is in fact not a linear independent
set of solutions.

This is an essential condition for Variation of Parameters. Up next:
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Variation of Parameters

In the section on non-homogeneous second order ODEs, I glossed over varia-
tion of parameters, as we didn’t yet have the tools for it. Now we do, though,
and thus let’s consider a non-homogeneous ODE of the form

L[y] = a(x)y′′ + b(x)y′ + c(x)y = g(x)

where the functions a, b, and c are not necessarily constants.

The first thing we’ll have to do is redefine g(x) as, in fact, g(x)/a(x). In other
words, from the g(x)’s perspective, y′′ must have a coefficient of one. I know
this sounds silly, but the conditions of the proof for variation of parameters,
i.e. math magic, requires it. For further information, consult your nearest
masochistic analyst.

Then, let yc = c1y1 + c2y2 be the set of complimentary solutions to L[y] = 0,
the homogeneous variant of our ODE. Just as we did in Reduction of Order,
we may conjecture that yp will be of the form

yp = u1(x)y1(x) + u2(x)y2(x)

By math magic, the following will define our mystery functions:

u1 = −
∫

y2 · g(x)
W (y1, y2)

dx and u2 =
∫

y1 · g(x)
W (y1, y2)

dx

You may disregard the arbitrary constants that will come out of the integration
process, and thus yield the general solution:

y(x) =
������:yc
c1y1 + c2y2 +

��������:
yp

u1 · y1 + u2 · y2

= c1y1 + c2y2 + yp
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III Nth Order Equations
For nth order linear ODEs, we have the familiar form

y(n)(x) + p1(x)y(n−1)(x) + ... + pn−1(x)y′(x) + pn(x)y(x) = g(x)

where y(n) represents the nth derivative of y. We will only be able to solve
select, linear nth order ODEs, since their size can make them difficult to work
with.

constant coefficient

Homogeneous

We’ll solve constant coefficient equations in the nth order just as we solved
them in the second order, where the following characteristic equation can be
formed and its roots found:

rn + arn−1 + ... + yr + z = 0

With the roots of this equation found, we can use methods seen in Part II to
form a general solution, where any factors beyond the two that are normally
found in a second-order characteristic equation are put into their appropriate
forms and tacked onto the existing complimentary solution.

Polynomial Factorization Review

Time to break out some high school math! As a refresher, let’s consider the
factorization of the nth order polynomial shown above. By necessity (and by
math magic), at least one factor, r0, of the z term will be a root, and we can
check for these a la plug-and-chug.for example: if z = 4,

then r0 = ±4 ∨ ±2 ∨ ±1
Once a root is found, we can divide our polynomial by (r − r0), either creating
a simple quadratic or another polynomial of the n ≥ 3th degree, which we can
thusly factor using the method described above. Additionally, if we are lucky
and encounter (anywhere in the process) a polynomial of the form:

arn + brn−1 + crn−2 + drn−3 = 0 with
a
b

=
c
d

then we can easily factor out the greatest common denominator of each “half”
and simplify our work.

Non-Homogeneous

Suppose we are asked to solve a constant coefficient equation that has a real,
non-zero g(x) on the right-hand side. Our first step, no matter the method
described below, will be to find the solution to the homogeneous variant,
L[y] = 0, of our equation.
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Undetermined Coefficients

Our method of undetermined coefficients here is nigh-identical to the methods
seen above, with the same “guesses” made and tricks employed. The only real
difference is difficulty, as further differentiation will be required to determine
our constants.

fundamental solution sets

We will revisit variation of parameters to solve some more complicated non-
homogeneous ODEs, but first we’ll need to take a segue into higher order
Wronskians.

Linear Independence

As with second order equations, the principle of superposition can be applied
to the above ODE, and thus we can represent our solution space with the
following:

y(x) = c1y1(x) + c2y2(x) + ... + cnyn(x) =
n∑
i=1

ciyi(x)

The solution space y(x) is called “a fundamental set of solutions” if the associ-
ated Wronskian proves linear independence. Of course, we’ll have to expand
it beyond the baby 2x2 from Part II:

W (y1, y2, ..., yn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 . . . yn
y′1 y′2 y′3 . . . y′n
y′′1 y′′2 y′′3
...

...
. . .

y
(n)
1 y

(n)
2 y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Just as before, W (y1, y2, ..., yn) must equal 0 for all x ∈ I to show linear
dependence on I ∈ R, whereas even if there exists one x0 ∈ I such that
W (y1, y2, ..., yn)(x0) , 0, then we can assert that we have a fundamental solu-
tion set on the interval.

Abel’s Identity

Up to this point, the Wronskian has been defined in terms of known solutions
to our ODE, but thanks to our friend Abel, we are able to determine the
Wronskian of a homogeneous equation using only information from the ODE
we started with. Consider the following:

W (y1, y2, ..., yn) = Ce−
∫
p1(x)dx
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p1(x), in this case, is pulled from the following general form, which we saw
above:

y(n)(x) + p1(x)y(n−1)(x) + ... + pn(x)y(x) = 0

Abel’s Identity gives an important result for homogeneous equations, being
that their solution set must always be linearly dependent (where C = 0) or
always linearly independent (where C , 0).

revisiting variation of parameters

With all that nth order Wronskian knowledge under our belt, we can now
begin working on variation of parameters... right? Almost. Let’s defined these
special Wronskians as follows:

W1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y2 y3 . . . yn
0 y′2 y′3 . . . y′n
0 y′′2 y′′3
...

...
. . .

1 y
(n)
2 y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
W2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 0 y3 . . . yn
y′1 0 y′3 . . . y′n
y′′1 0 y′′3
...

...
. . .

y
(n)
1 1 y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . Wn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 . . . 0
y′1 y′2 y′3 . . . 0
y′′1 y′′2 y′′3
...

...
. . .

y
(n)
1 y

(n)
2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
You’ll notice that, notably, Wi has its ith column swapped with the vector
⟨0, 0, 0, ..., 1⟩. Putting that aside, let’s consider the general solution to the ODE
L[y] = g(x):

yB = yc + yp

As seen before, yc, the “complimentary solution” is derived from L[y] = 0, and
yp is dependent upon g(x). Suppose we have found a fundamental solution
set for L[y] = 0. Define yp, then, as

yp = u1yn + u1yn + ... + unyn

where yi are solutions to our homogeneous equation.

Finally, we have the following formula for each ui :

u1 =
∫

W1 · g(x)
W (y1, y2, ..., yn)

dx u2 =
∫

W2 · g(x)
W (y1, y2, ..., yn)

dx

. . . un =
∫

Wn · g(x)
W (y1, y2, ..., yn)

dx

Equivalently, if we let Wi be equal to W with the ith column instead replaced
by ⟨0, 0, 0, ..., g(x)⟩, then we can express ui as

∫
Wi/W .
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While functional identically, the solving process here may be much easier or
much harder depending upon the problem.

existence and uniqueness

For Linear ODEs

For linear ODEs, it’s quite easy to show that a unique solution exists. Here is
what to consider:

1. The initial conditions y(x0) = y0, y′(x0) = y1, y′′(x0) = y2, ..., y(n)(x0) =
yn exist and are defined for a chosen x0

2. The functions p1(x), p1(x), ..., pn(x), as defined above, are continuous on
the interval I ∈ R

If both these conditions are met, then a unique solutions exists on the interval I .
Of course, if I = R, then L[y] = g(x) has only one solution for all real numbers.

Extended Picard–Lindelöf Theorem

Just as we had conditions for existence and uniqueness of solutions to first
order ODEs, so do we have new conditions to establish the existence and
uniqueness of solutions to nth order problems. The following mimics exactly
what the Picard–Lindelöf Theorem established previously.

Let f (x, y′ , y′′ , ..., y(n−1)) = y(n) be the general form of any nth order ODE, with
initial conditions y(x0) = y0, y′(x0) = y1, y′′(x0) = y2, ..., y(n)(x0) = yn

If f (x, y′ , y′′ , ..., y(n−1)) is continuous at x0 and ∂f
∂y is continuous for all

yi with i ∈ {0, 1, 2, ..., n}, then there exists a unique solution to the ODE
for initial conditions y(x0) = yi .
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IV Series Solutions
important definitions

A good portion of this section will be review from Calculus 2, but nevertheless
let’s redefine some concepts for ourselves.

Radius of Convergence

With A =
∞∑
n=1

an(x − x0)n as our general form for power series, A is said to

converge for a selection of ρ such that |x − x0| < ρ. We can almost always use
the ratio test to determine ρ and thus the convergence of A:

A converges ⇐⇒ |x − x0| · lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ < 1

Equivalently, we have

lim
n→∞

∣∣∣∣∣ an
an+1

∣∣∣∣∣ = ρ

Note that if ρ = ∞, then A converges for all x ∈ R, and on the contrary if ρ = 0,
then the series only converges for x0.

Real Analytic

Simply put, a function f (x) is real analytic if its Taylor series representation has
a positive radius of convergence and hence converges to f (x) when |x − x0| < ρ.
In the content to follow, almost all of the functions we’ll analyze will be
analytic (all elementary functions, especially, are analytic, though |x| is not).

Ordinary Point

A point x0 is said to be an ordinary point of f (x) if the Taylor series expansion
of f (x) at x0 is real analytic. Points that are not ordinary are called “singular.”

If we are given an ordinary point, x0, and two polynomials, A(x) and B(x), the
radius of convergence of A(x)

B(x) about x0 is the euclidean distance between the
nearest zero in the complex plane and x0. Why? Who knows.

Regular Singular Point

Suppose that x0 is a singular point, i.e. not an ordinary point. Then, if

(x − x0)
Q(x)
P (x)

and (x − x0)2 R(x)
P (x)

are analytic at x0



21 series solutions

x0 is called a “regular singular point.” Equivalently, if P (x), Q(x), and R(x) are
polynomials, we may use another set of conditions:

lim
x→x0

(x − x0)
Q(x)
P (x)

is finite and lim
x→x0

(x − x0)2 R(x)
P (x)

is finite

If the above equations are not real analytic, then we have a “irregular singular
point.” We’ll define P (x), Q(x), and R(x) shortly.

solving an ode using series

The Homogeneous Case

Here, we will consider the ODE

L[y] = P (x)y′′ + Q(x)y′ + R(x)y = 0

where P (x), Q(x), and R(x) are all polynomials.

If p(x) := Q(x)
P (x) and q(x) := R(x)

P (x) have an ordinary point x0, (essentially, P (x0) ,
0), we have a nice enough setup to express our solution as

y(x) =
∞∑
n=0

an(x − x0)n = a0y1(x) + a1y2(x)

where a0 and a1 are arbitrary constants (recall the principle of superposition)
and y1,2(x) are almost always power series themselves.

Note that any choice of x0, so long as it is an ordinary point, can be used in
our power series for y(x). You’ll find that fixing x0 = 0 is often helpful.

Here are some statements we can make about the solution set:

• y0 and y1 will form a fundamental solution set, with W (y0, y1) = 1

• Let ρf (x) denote the radius of convergence of the power series of f (x) at

x0. Then we can form a lower bound for our solution:

ρy(x) ≥ min{ρp(x), ρq(x)}

In order to solve our ODE, we will need to differentiate our series solution:

y′(x) =
∞∑
n=0

nan(x − x0)n−1 y′′(x) =
∞∑
n=0

n(n − 1)an(x − x0)n−2

However, since nan(x − x0)n−1 |n=0 and n(n − 1)an(x − x0)n−2
∣∣∣n=0,1 are both
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equal to 0, we can equivalently write

y′(x) =
∞∑
n=1

nan(x − x0)n−1 and y′′(x) =
∞∑
n=2

n(n − 1)an(x − x0)n−2

or even...

y′(x) =
∞∑
n=0

(n + 1)an+1(x − x0)n and y′′(x) =
∞∑
n=0

(n + 2)(n + 1)an+2(x − x0)n

by re-indexing the altered sum.

By utilizing these transformations, we can reduce our work when it comes to
reducing, factoring, and combining terms of y(x) (the problem-solving process
is especially painful when using series solutions).

In the event that P (x), Q(x), and R(x) are not polynomials, we can rearrange
our ODE to yield L[y] = y′′ + p(x)y′ + q(x)y = 0 and thus solve.

Non-Homogeneous

When L[y] = g(x), our solving process is similar but nonetheless more dreadful
than before. In the end, our solution should be in the following form:

y(x) = a0y1(x) + a1y2(x) + yp(x)

The “trick,” in this case, will be to separate terms of xn in yp in order to solve
a system of equations. If this is not possible, then we are out of luck when it
comes to using the simple stuff.

Euler Equations

We’ve gone long enough without defining a new ODE form, so let’s do that. A
Euler equation (in its most general form) looks like

L[y] =
n∑
i=0

= ai(x)xiy(i)

To solve, we’ll first consider the homogeneous, constant-coefficient case where
n = 2, i.e. L[y] = ax2y′′ + bxy′ + cy. Assuming that xr satisfies this equation,
we can form the following indicial equation to help us find r:

ar(r − 1) + br + c = 0

From here, there are three main cases to consider (just like the characteristic
polynomial for second order equations).
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Real Roots

Having factored our indicial equation, if we have two distinct, real roots, we
can express the general solution as

y(x) = c1|x|r1 + c2|x|r2

with c1, c2 ∈ R. Since r1 , r2, our solution set is automatically linearly inde-
pendent.

Complex Roots

If we have complex roots, in the form r = α ± βi, then our general solution is

y(x) = c1|x|α cos(β ln |x|) + c2|x|α sin(β ln |x|)

= |x|α (c1 cos(β ln |x|) + c2 sin(β ln |x|))

Repeated Roots

With two repeated roots, r = r1 = r2, the general solution looks like

y(x) = |x|r(c1 + c2 ln |x|)

Frobenius’ Method

This next section will be especially messy, so I suggest referencing chapter
5.5 in the 12th edition of Wiley’s Elementary Differential Equations for a more
rigorous presentation. Suppose we have an ODE of the form P (x)y′′ + Q(x)y′ +
R(x)y = 0, but we’d like to form our solution around a regular singular point as
opposed to an ordinary point. In this case, the following algorithm, “Frobenius’
Method,” will help us solve for y(x):

1. Rearrange the ODE such that x2y′′ + xp(x)y′ + q(x)y = 0

2. Find a regular singular point, x0, such that

lim
x→x0

(x − x0)p(x) = p0 and lim
x→x0

(x − x0)2q(x) = q0

are finite. It is useful to consider pn as the coefficient contained in the
nth degree of x · p(x)’s Taylor expansion. The same holds for x2 · q(x).

3. Derive the associated Euler equation x2y′′ + p0xy
′ + q0y = 0 using the

values found in the last step.

4. Use the indicial equation, F(r) = 0, to find r1 and r2
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5. We will have

F(r + n)an +
n−1∑
k=0

ak [(r + k)pn−k + qn−k] = 0

This is quite daunting at first. Think of the summation as considering
terms p1,2,... and q1,2,... which are non-zero. We will not have to consider
r for the moment, and thus find a general recurrence relation with
an = {something} · an−1

6. Set r = r1 and use it to find a general formula for an (it will contain a0
as a constant, which we can remove)

7. With an, we can substitute in equation (1) to get a formula for y1(x). This
can be rewritten in the form

y1(x) = xr1

1 +
∞∑
n=1

an{r1}x
n


8. An expression for y2(x) can similarly be derived using r = r2 and re-

peating steps 5-6. Our general solution will be of the familiar form
y(x) = c1y1(x) + c2y2(x)3.

9. And we’re done!

However, I lied slightly in step (8). Our solution will have to be tweaked if
r1 = r2, i.e. if our indicial equation from step (6) has repeated roots. In this
case, y1(x) may remain in its current form, but y2(x) should be altered as such:

y2(x) = y1(x) ln(x) + xr1

∞∑
n=1

bnx
n

with bn = ∂
∂r

[
an{r1}

]
. If bn cannot be found using partial differentiation, it is

possible (though awful) to find first and second derivatives of y2(x) itself and
plug it into the original ODE.

3This is why it was OK to remove a0 as we did in step (5)
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V Laplace Transforms
definition

Laplace transforms are, in effect, fancy integrals, and they are applicable to
continuously piecewise functions, or piecewise functions whose open subinter-
vals are themselves continuous. Of course, any normally continuous function
satisfies this condition.

The Laplace transform is given by

F(s) = L{f (t)} =

∞∫
0

e−stf (t)dt

Note that, for piecewise continuous functions on an interval I , we can divide
our interval into N subintervals, with j1, j2, ..., jN denoting each dividing point.

j0 j1 j2 j3 j4

Thus, we can also write our Laplace transform as

L{f (t)} =
N∑
n=0

jn+1∫
jn

e−stf (t)dt

Laplace transforms are also linear transformations! Like all linear
transformations, we can rearrange constants and terms as such:

L{Af (x) + Bg(x) + h(x)} = L{Af (x) + Bg(x)} + H(x)

= L{Af (x)} + L{Bg(x)} + H(x)

= AF(x) + BG(x) + H(x)

In addition to being piecewise continuous, a function must be of exponential
order in order for its Laplace transform to exist. In particular, a function f (x)

is said to be of exponential order if

|f (x)| ≤ Mect ∀t ≥ T for positive constants M, T , and c
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For instance, eαt meets this condition with c = α, M = 1, and T being arbitrary.

Putting this all together, we have the following existence condition:

If |f (x)| ≤ Mect ∀t ≥ T with M, T , c > 0 and f (x) is piecewise continu-

ous on t ∈ [0,∞), then its Laplace transform exists.

solving ivps using laplace transforms

Ordinary Functions

All of this preamble about the Laplace transform boils down to the following

equation:

L{f (n)(t)} = sn L{f (t)} − sn−1f (0) − sn−2f ′(0) − ... − f (n−1)(0)

Here, we have the multipliers s decreasing in exponential magnitude while

the derivatives of our “initial conditions,” f (0), f ′(0), f ′′(0), etc. are increasing
in magnitude. Once sn → s0, we can stop. From here on out, solving IVPs

this way will just be a matter of moving certain expressions in and out of its

Laplace transformation.

Heaviside Functions

Define the Heaviside function, or the unit step function, as the following:

Ua =


0 if t < a

1 if t ≥ a

Visually, this acts as an “off-on” switch:

0 a

1

0 a

1

Ua Ua · f (t)
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We can easily form other Heaviside-like constructions by multiplying Ua by

any otherwise continuous function (shown on the right). It’s Laplace transform

is given on the next page.

The Dirac Delta Function

The Dirac delta function, denoted δ(t − a), can be thought of as a short impulse
of energy, with infinite magnitude, infinitesimal duration, and (curiously)

finite area. Here’s an exaggerated picture:

0 a

δ(t − a)

It’s Laplace transform is also listed in the table below.
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Table of Transforms

f (t) = L−1{F(s)} F(s) = L{f (t)}

1
1
s

eat
1

s − a

tn
n!
sn+1

tneat
n!

(s − a)n+1

eatf (t) F(s − a) or the First Translation Theorem

sin(at)
a

s2 + a2

cos(at)
s

s2 + a2

sinh(at)
a

s2 − a2

cosh(at)
s

s2 − a2

Ua
e−as

s

Uaf (t − a) e−asF(s) or the Second Translation Theorem

δ(t − a) e−as
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convolutions

Define a conovlution of two functions as

(f ⊛ g)(t) =

t∫
0

f (τ)g(t − τ)dτ

We won’t be concerned too much with the geometric intuition of convolutions,

but they nevertheless are useful in solving IVPs. In particular, we have this

relation:

L{(f ⊛ g)(t)} = L{f (t)} · L{g(t)}

From here, it is possible to derive a solution for y(t) using convolutions. You’ll

avoid all the nasty partial fractions in doing so, but at the same time introduce

many messy integrals (so, generally, it’s not worth it). The following method

utilizes convolutions in a far more practical way. Let’s take a non-homogeneous

ODE, compute its Laplace transform, and rearrange it as such:

L[y](t) = f (t)→ P (s)Y (s) − Q(s) = F(s)

Then we have:

y(t) = (f ⊛ g)(t) + L−1
{
Q(s)
P (s)

}
Where g(t), the “Green’s function,” has the following properties:

L[g](t) = δ(t) with g(0) = g ′(0) = ... = g(n−1)(0) = 0

Thankfully, there’s a straightforward expression for g(t):

L{g(t)} =
1

P (s)
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Cheers!


