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1 genus of a curve

abstract

Elliptic curves are smooth, Cover:
supersingular
isogeny graph
over F2017

genus one projective varieties of dimension one. Points on these
curves give rise to a group structure, where the analogous discrete logarithm problem
is hard. This fact led to the first uses of elliptic curves in cryptography, by adapting
schemes which utilize the multiplicative structure of finite fields, such as those based on
the Diffie-Hellmann key exchange ([10], [12]).

Since then, promising cryptographic programs have risen from the theory of isogenies—
essentially well-structured maps—between elliptic curves. We present the background
required to understand isogeny-based elliptic curve cryptography and demonstrate a
practical implementation of these ideas with the Charles-Goren-Lauter hash function ([4]).

I Genus of a Curve

These notes are content from [14], in particular sections I-V; lectures by Prof. Lozano-
Robledo ([11]); discussions with Prof. Henri Darmon; and work by Prof. Eyal Goren and
others on isogeny-based cryptography ([7], and especially [4]).

Elliptic curves are described in the language of projective varieties—mutual solutions in
projective coordinates to a set of n-variable homogeonous polynomials—and the maps
between them. Refer to [14], I-II.3, for a self-contained introduction to algebraic varieties
(in particular, function fields, morphisms, divisors, and projective space). We assume this
knowledge and some basic Galois theory (see Appendix B for symbols not defined).

algebraic varieties

def 1.1Let M/K be an extension over a field K . We call a set {a1, ..., ak} ⊂ M transcendentally
independent if no polynomial f ∈ K[x⃗] exists such that f (a1, ..., ak) = 0.

A transcendence basis β ⊆ M is a maximally transcendentally independent set in M, whose
size we call the transcendence degree of M.

Eg. 1.1.1

K ⊂ K(t2) ⊂ K(t)

transcendental

algebraic

as t satisfies the polynomial equation x2 − t2 in K(t2).



nicholas hayek 2

Eg. 1.1.2

K ⊂ K(β) ⊂ M

transcendental

algebraic

where β is a transcendence basis for M/K .

def 1.2 Let V be an affine variety. Recall the function field of V . The dimension of V , denoted
dim(V ), is the transcendence degree of K(V ), viewed as a K-vector space.

def 1.3 Let V be an affine variety defined by polynomials f1, ..., fm ∈ K[x⃗]. Then V is called smooth
at a point P ∈ V if and only if

rank
(
∂fi
∂xj

(P )
)
i∈[m]
j∈[n]

= n − dim(V )

prop 1.1 If V be an affine variety defined by one polynomial f ∈ K[x⃗], then V is non-smooth at
P ∈ V ⇐⇒ ∇f (P ) = 0.

proof. The zeros of f define a hypersurface in An, which one may view as An−1. Then,
K(An−1) = K(x1, ..., xn−1), which has transcendence degree n − 1 over K . Hence,
dim(V ) = n − 1.

The matrix provided in Def 1.3 is exactly ∇f (P ) when m = 1. Any non-zero row matrix
has rank 1, so rank(∇f (P )) = 0 ⇐⇒ ∇f (P ) = 0. But n − dim(V ) = n − (n − 1) = 1, so P
is non-smooth ⇐⇒ ∇f (P ) = 0.

From this point onward we will only consider projective varieties V , with dimensionality
and smoothness conditions defined as above on V ∩ An, where we pick an arbitrary copy
An ⊂ Pn. (In particular, one may choose an inclusion (x1, ..., xn) ↪→ [x0 : · · · : xn−1 : 1]).

Frequently, we will present a projective variety in "affine form." By writing f (x1, ..., xn) 7→
x

deg(f )
0 f

(
x1
x0
, ..., xnx0

)
, we recover its projective coordinate form. For instance,

y2 = x3 + x2 becomes zy2 = x3 + zx2

Applying Prop 1.1, the above variety is smooth everywhere except at (0, 0) = [0 : 0 : 1].

def 1.4 A projective variety of dimension 1 is called a curve.

prop 1.2 Projective varieties in P2 defined over one polynomial are curves.

proof. dim(V ) = n − 1 = 2 − 1 = 1, since V is defined over one polynomial.
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def 1.5Let φ : C1 → C2 be a morphism of curves. We call deg(φ) = [K(C1) : φ∗(K(C2))] the degree
of φ. The separable and inseparable degrees of this extension are denoted degs(φ) and
degi(φ), respectively. (For a proof of K(C1)/φ∗(K(C2)) being a finite extension, see [8], II.6.2)

Eg. 1.2.1 Let φ : {C : zy2 = x3 + z3} → P1 by [x : y : z] 7→ [x : z]. Taking a slice z = 1,
we have Q(P1) = Q(x), and Q(C) = Q(x,

√
x3 + 1). Then deg(φ) = [Q(C) :

Q(P1)] = 2, since
√
x3 + 1 satisfies the polynomial t2 − x3 − 1 in Q(x).

differentials

def 1.6Let C be a curve. The divisors of C, denoted Div(C), is the collection of finite formal sums

D =
∑
P ∈C

nP (P )

where nP is an integer. We add and subtract divisors by collecting coefficients, i.e.
∑
nP (P ) +∑

n′P (P ) =
∑

(nP + n′P )(P ), and set 0Div(C) = 0, called the zero divisor.

def 1.7Let deg(D) =
∑
P ∈C nP . The set of degree 0 divisors, Div0(C), forms a subgroup of Div(C).

We similarly define DivK (C) and Div0
K (C), by choosing divisors fixed by σ ∈ Gal(K/K),

with σD =
∑
P ∈C nP (σP ).

def 1.8For D ∈ Div(C), we say D ≥ 0 if nP ≥ 0 ∀P ∈ C.

def 1.9To any function f ∈ K(C), we define the divisor of f , div(f ) =
∑
P ∈C ordP (f )(P ). We call

these principle divisors. We denote by Pic(C) the quotient of Div(C) modulo principle
divisors, under formal addition. (Similarly for Pic0(C)).

def 1.10Let C be a curve. Then ΩC is the collection of differentials dx : x ∈ K(C). It is 1-dimensional
K(C) vector space, with a generator ⟨dt⟩ for any uniformizer t ∈ K(C).

def 1.11Let ω ∈ ΩC and P ∈ C. Since ΩC is generated by dt, we may write ω = gdt for g ∈ K(C).
Then we define ordP (ω) = ordP (g). The divisor associated with ω is

div(ω) =
∑
P ∈C

ordP (ω)(P )

def 1.12L(D) = {f ∈ K(C) : div(f ) + D ≥ 0} ∪ {0}, and ℓ(D) = dimK L(D).

Eg. 1.3.1 div(x) = (0) − (∞), with respect to P1. Properties of divisors can be found in
[14], II.3. Notably, deg(div(f )) = 0 always.

Eg. 1.3.2 Let P = [x0 : y0] , [1 : 0]. Then t := x − x0 is a uniformizer at P . Note that, in
projective coordinates, this is x − x0y, so, indeed, this doesn’t hold for P = [1 :
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0]. Note that dt = d(x − x0) = dx − dx0 = dx, so ordP (dx) = ordP (1) = 0.

However, when P = [1 : 0], t := 1
x is a uniformizer. This is better observed

in projective coordinates, i.e. y
x . Then, dt = d(1

x ) = −dx
x2 , so ord[1:0](dx) =

ord[1:0](
−1
x2 ) = −2. Hence, deg(div(ω)) is not always 0 for ω ∈ ΩC .

Eg. 1.3.3 If deg(D) < 0, then
∑
P ∈C nP ≤ 0. Hence, if div(f ) + D ≥ 0, then deg(div(f ) +

D) ≥ 0. But deg(div(f )) = 0, so f = 0, and hence L(D) = {0}.

We now have the tools to state and apply the Riemann-Roch theorem.

riemann-roch

1.1 Riemann-Roch

Let C be a smooth curve and let KC = div(ω) for ω , 0 ∈ ΩC (called a canonical divisor).
Then ∀D ∈ Div(C), we have

ℓ(D) − ℓ(KC − D) = deg(D) − g + 1

for some unique g ∈ Z≥0.

def 1.13 The genus of a smooth curve C is g ∈ Z≥0 for which Thm 1.1 holds.

We observe the following useful corollaries:prop 1.3

(a) ℓ(KC) = g

(b) deg(KC) = 2g − 2

(c) If deg(D) > 2g − 2, then ℓ(D) = deg(D) − g + 1

proof.
(a) Fix D = 0, the zero divisor. Then ℓ(0) − ℓ(KC − 0) = 1 − ℓ(KC) = deg(D) − g + 1 =
−g + 1 =⇒ ℓ(KC) = g. Recall Def 1.12: ℓ(0) = dimK (L(0)), where

L(0) = {f ∈ K(C)∗ : div(f ) ≥ 0} ∪ {0}

But such a function f must have no poles, so it is constant. Hence, L = K
∗

= K ,
and the result follows.

(b) Fix D = KC . Then ℓ(KC) − 1 = deg(KC) − g + 1, so by (a), g − 1 = deg(KC) − g + 1,
so deg(KC) = 2g − 2.

(c) Suppose deg(D) > 2g − 2. Then deg(D) > deg(KC), so deg(KC − D) < 0. Hence,
L(KC − D) = {0}, and ℓ(KC − D) = 0. And we’re done.



5 genus of a curve

Recall that, if deg(D) < 0 =⇒ L(D) = {0}, as shown in Example 1.3

From Prop 1.3 (c), if g = 1, then deg(D) > 0 =⇒ ℓ(D) = deg(D).

Consider the following fleshed-out use cases for Thm 1.1:

Eg. 1.4.1 Let C = P1, the projective line. Then K(P1) = K(x). Since ord[0:1](x) = 1, and
x ∈ K(x), x is a uniformizer. Hence, ΩC = ⟨dx⟩.

Since dx , 0, a canonical divisor may be KC = div(dx). Let P = [x0 : y0] , [1 :
0]. We showed in Example 1.3 that ordP (dx) = 0 and ord[1:0] = −2. Hence,
KC = −2(∞). We conclude that deg(dx) = −2 = 2g − 2 =⇒ g = 0 by Prop 1.3.

Eg. 1.4.2 Let C : y2 = (x − e1)(x − e2)(x − e3) for ei , ej ∈ K .

0 5 10 15 20 25 30

-5

0

5

Figure 1: C with (e1, e2, e3) = (1, 5, 6) over K = Q

ω = dx
y is a non-zero divisor on C, where K(C) ⊆ K(P2) = K(x, y). We claim

div(ω) = 0. Consider:

2ydy = [(x − e1)(x − e2) + (x − e2)(x − e3) + (x − e3)(x − e1)]dx

=⇒ dx =
2ydy∑

i,(x − ei)(x − ej )

Notice that y is a uniformizer at Pk = (ek , 0), and therefore

ordPi (dx) = ordPi

(
2y∑

i,(x − ei)(x − ej )

)
= 1

since at least one of (x − ei)(x − ej ) , 0. Also note that all other (α, 0) < C. We
still need to consider the point at infinity P = [0 : 1 : 0] = ∞. For this, xy is a
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uniformizer. Thus, we compute

d

(
x
y

)
=
ydx − xdy

y2

=⇒ dx =
2y3

2y2 + x
∑
i,j(x − ei)(x − ej )

d

(
x
y

)
Then,

ord∞(dx) = ord[0:1:0]
2y3

2y2 + x
∑
i,j(x − ei)(x − ej )

= −3

since the numerator dominates with order 3. All totaled, then

div(dx) = (P1) + (P2) + (P3) − 3(∞)

But also, div(y) = (P1) + (P2) + (P3) − 3(∞) by considering the original curve.
We have div

(
dx
y

)
= div(dx) − div(y) = 0. Hence,

ℓ(KC) = ℓ(0) = 1 = g

We conclude that C has genus 1 by Prop 1.3 (a).

II Weierstrass Forms
We will now shift our focus to genus one curves, as in the last example.

def 2.1 The Weierstrass form is a curve defined by the following

C : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 ai ∈ K

def 2.2 With C : y2 = x3 + Ax + B, we have

∆ := −16(4A3 + 27B2) and j := −1728
(4A)3

∆

∆ and j may
be defined
over a long
Weierstrass

form (Def 2.1),
but their

definitions
would be

hairier.

called the discriminant and j-invariant, respectively. Note that ∆ is a scalar multiple of the
normal discriminant of a depressed cubic equation, which y2 satisfies.

Eg. 2.1.1 Weierstrass forms satisfy a few nice properties. For one, coordinate transfor-
mations may reduce them into convenient forms: when char(K) , 2,

ι2 : y 7→ 1
2

(y − a1x − a3) =⇒ C : y2 = 4x3 + b2x
2 + 2b4x + b6
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If char(K) , 3 as well, we may reduce further:

ι3 : (x, y) 7→
(
x − 3b2

36
,
y

108

)
=⇒ C : y2 = x3 − 27c4x − 54c6

The coefficients {ai , bi , ci} satisfy a set of algebraic relations determined by ι2
and ι3, which can be found [14], III.1.

Frequently, in fields with of characteristic not 2 or 3, we simply write a
Weierstrass form as C : y2 = x3 + Ax + B. The quantities outlined in Def 2.2
refer to this form, which we call the short Weierstrass.

Eg. 2.1.2 Let C be a short Weierstrass curve. Then we can determine its shape by the
quantities ∆ and A. In particular, C is smooth ⇐⇒ ∆ , 0, and C has a cusp
⇐⇒ ∆ = 0, A = 0.

proof.Let C be in long Weierstrass form, homogeneous, with

zy2 + a1zxy + a3z
2y = x3 + a2zx

2 + a4z
2x + a6z

3

Setting to zero, taking a partial w.r.t. z, and evaluating at∞ = [0 : 1 : 0],
we have

y2 + a1xy + 2a3zy − a2x
2 + 2a4zx + 3a6z

2
∣∣∣
[0:1:0]

= 1

so C is smooth at infinity always, by invoking Prop 1.1.

For finite points, consider again y2 = x3 + Ax + B = f (x). In projective
coordinates, this is

zy2 − x3 − Az2x − Bz3 = 0

whose partials are
〈
−3x2 − Az2, 2zy, y2 − 2Azx − 3Bz2

〉
. In particular, if

there is a singular point P , then f ′(P ) = 0 (observing ∂x) and f (P ) = 0
(observing ∂y), so f (x) has a double root. But ∆ = 0 ⇐⇒ f (x) has a
multiple root (as a typical discriminant).

A = 0, and if ∆ = 0, then B = 0 as well. We conclude that C : y2 = x3,
which has a cusp at (0, 0). As it happens, if A , 0, we observe a node.

prop 2.1Weierstrass forms are easily classifiable by their j-invariants.

(a) Any two short Weierstrass forms in variables (x, y) and (x̂, ŷ), respectively, may be
related by (and only by) a linear change of variables

x = u2x̂ y = u3ŷ : u ∈ K∗
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(b) Two smooth Weierstrass curves are isomorphic ⇐⇒ their j-invariants are equivalent.

proof. For (a), see [14], III.1.4. For (b), the ( =⇒ ) direction follows by plugging in.

For ( ⇐= ), let j = ĵ, and the two curves have coefficients A, B and Â, B̂, respectively.
Then

A3

4A3 + 27B2 =
Â3

4Â3 + 27B̂2

Rearranging, this yields
A3B̂2 = Â3B2

We consider a few cases:

1. A = 0. Then j = 0. But ∆ , 0, so B , 0, and we conclude Â = 0. We rewrite
y2 = x3 + B and y2 = x3 + B̂. These are related by the change of variables

(x, y)
⋆7−→ (u2x, u3y) : u =

(B
B̂

) 1
6

2. B = 0. Then j = 1728, and A , 0, since ∆ , 0. But then B̂ = 0. With

u =
(A
Â

) 1
4

we perform ⋆ again.

3. Either transformation above will work.

The punchline: Weierstrass forms are

• Easy to tell when smooth and easy to visualize (Example 2.1).

• Easy to set into isomorphism classes (Prop 2.1).

Above all, however, Weierstrass forms characterize exactly elliptic curves over K :

def 2.3 A curve E is called an elliptic curve if it is smooth and genus one, containing a distinguished
point O ∈ E. We say that E is defined over K if E/K and O ∈ E(K).

2.1 Elliptic Curves over K are Weierstrass Forms

Any elliptic curve (E,O) defined over K is isomorphic to a Weierstrass form with
ai ∈ K , with O sent to [0 : 1 : 0]. Conversely, every smooth Weierstrass form with
ai ∈ K is an elliptic curve defined over K containing a base point [0 : 1 : 0].
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We will prove the latter claim only. For the former, one computes L(n(O)) explicitly for
small values of n, choosing suitable functions from K(E), until dimK L(n(O)) < #L(n(O)),
at which point we may claim a linear relation between its elements. This relation satisfies
Def 2.1.

proof.Let C : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. Consider the differential

ω =
dx

2y + a1x + a3

We claim div(ω) = 0. The result will follow, since then, setting KC = div(ω), we have
ℓ(KC) = ℓ(0) = 1 = g. One checks by inspection that a standard Weierstrass form
contains the point [0 : 1 : 0] when homogenized. It is smooth by assumption.

Writing C as F(x, y) = 0, we have

ω =
dx
Fy

= −
dy

Fx

Fix P = (x0, y0). Since d(x − x0) = dx − dx0 = dx, we can rewrite, equivalently,

ω =
d(x − x0)

Fy
= −

d(y − y0)
Fx

P cannot be a pole, or else Fy = Fx = 0 at P . But C must be smooth.

P might still be a zero. Consider the map C → P1 by [x : y : 1] 7→ [x : 1], of degree 2.
(Since #φ−1(P ) = 2). Then ordP (x − x0) ≤ 2. In general, ordP (x − x0) = 2 if and only if
F(x, y) has a double root at P , since x − x0 is order 1 otherwise. So we have two cases,
and, in either, we write Where t is a

uniformizer at
P , ord(dt) =
ord(t) − 1ordP (ω) = ordP

(
d(x − x0)

Fy

)
= ordP (x − x0) − 1 − ordP (Fy)

So ordP (ω) = 2 − 1 − 1 = 0, or ordP (ω) = 1 − 1 − 0 = 0. We conclude that ω cannot have
zeros either. It remains to show the same result for the line at infinity O = [0 : 1 : 0].
With this base covered, div(ω) = 0, and we are done.

III Isogenies
Consider an elliptic curve E. Points P , Q ∈ (E,O) ⊆ P2 satisfy a group law + : (P , Q)→ P +Q,
defined by the following procedure:

1. L← the line through P and Q



nicholas hayek 10

2. R← L ∩ E, not P or Q

3. L′ ← the line through R and O

4. P + Q← L′ ∩ E, not P or Q

E becomes an abelian group with 1E = O. See [14], III.2.2 for a full justification, and II
for essential results on morphisms. Using the curve we considered in Example 1.4, with
P = (1, 0) and Q = (3,

√
12), we have

0 10 20 30 40 50

-30

-20

-10

0

10

20

30

Figure 2: Addition of P and Q on C : y2 = (x − 1)(x − 5)(x − 5)

As groups, we may consider maps between elliptic curves which preserve the group action.

def 3.1 Let φ : (E1,O1) → (E2,O2) be a morphism. If φ(O1) = O2, then φ is called an isogeny. A
priori, an isogeny φ is not a group homomorphism. However, we find shortly (Prop 3.2)
that this comes for free.

Eg. 3.1.1 [0] : E1 → E2 by P 7→ O is called the constant isogeny.

Eg. 3.1.2 [m] : E → E by P 7→ [m]P is an isogeny, where

[m]P = P + · · · + P
m times
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since (P , Q) 7→ P + Q is a morphism, and O + · · · + O
m times

= O.

The goal of the following propositions will be to show the existence of a unique "dual" to φ,
related closely to the degree of φ, which we retain from Def 1.5. By convention, deg[0] := 0.

the dual isogeny

prop 3.1Let (E,O) be an elliptic curve. E � Pic0(E) by the map

P 7→ [(P ) − (O)]

where, by [(P ) − (O)], we mean the representative for (P ) − (O) modulo principal divisors
(see Def 1.9).

proof.First, we claim that, for any D ∈ Div0(E), D ∼ (P ) − (O) modulo principle divisors, i.e.
[D] = [(P ) − (O)], for some P ∈ E.

Thm 1.1 provides dim (L(D + (O))) = 1. Pick any non-zero element f ∈ L(D + (O)).
This must be a basis for it.

By definition of L, we have
div(f ) ≥ −D − (O)

Assuming [D] , [0], we find that div(f ) has a −D − (O) term. But, since deg(div(f )) =
deg(D) = 0, it must be

div(f ) = −D − (O) + K

for some degree-1 divisor K . But then K ≥ 0, so K = (P ).

Then, since −D − (O) + (P ) is principle, we have D ∼ (P ) − (O), as desired.

Under the assignment P 7→ [(P ) − (O)], we have a surjective map σ : E ↠ Pic0(E).
ker(φ) = O by definition, so this is a bijection, and E � Pic0(E).

In the future, denote σi : Ei → Pic0(Ei) when Ei is arbitrary.

prop 3.2Let φ : E1 → E2 be an isogeny. Then φ(P + Q) = φ(P ) + φ(Q) ∀P , Q ∈ E1.

proof.If φ = [0], then this is clear. Otherwise, define

φ∗ = Pic0(E1)→ Pic0(E2) :
∑

ni(Pi) 7→
∑

ni (φ(Pi))
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Combining the previous results, we have the following diagram

E1 Pic0(E1)

E2 Pic0(E2)

σ1

φ φ∗

σ2

Let P , Q ∈ E1. Then P +Q
σ17→ [(P +Q)− (O)]. One can show that (P +Q)− (P )− (Q) + (O)

is principle, so in particular (P + Q) − (O) = (P ) − (O) + (Q) − (O). Proceeding:

P + Q
σ17→ [(P + Q) − (O)] = [(P ) − (O)] + [(Q) − (O)]
φ∗7→ [(φ(P )) − (O)] + [(φ(Q)) − (O)]

σ−1
27→ φ(P ) + φ(Q)

P + Q
φ
7→ φ(P + Q)

Since φ = σ−1
2 ◦ φ∗ ◦ σ1, we conclude that φ(P + Q) = φ(P ) + φ(Q).

Since φ is a homomorphism, we have that ker(φ) = φ−1(O) is a subgroup of E.

prop 3.3 Let φ : E1 → E2 be an isogeny. Then # ker(φ) ≤ deg(φ).

proof. ∑
P ∈φ−1(Q)

eφ(P ) = deg(φ)

where eφ(P ) is the ramification index of φ at P . Setting Q = O, and recalling that
eφ(P ) ≥ 1, yields the result.

From now on, assume φ is separable.

prop 3.4 Let φ : E1 → E2 be an isogeny. Then # ker(φ) = deg(φ).

proof. We know that #φ−1(Q) = degs(φ) = deg(φ) except at finitely many points in E2. We’ll
show this is the case for all points.

Let Q ∈ E2 be chosen with #φ−1(Q) = deg(φ) (i.e. it satisfies the property).

Fix Q′ ∈ E2. We wish to show that #φ−1(Q) = #φ−1(Q′). Let T ∈ E2 satisfy Q + T = Q′.
Fix P ∈ φ−1(T ) and let S ∈ φ−1(Q) be arbitrary. We compute:

φ(S + P ) = φ(S) + φ(P ) = Q + T = Q′
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Thus,
deg(φ) ≥ #φ−1(Q′) ≥ #{S + P : S ∈ φ−1(Q)} = φ−1(Q) = deg(φ)

note that, where S , S ′, S + P , S ′ + P by the group law.

prop 3.5Let φ : E1 → E2 be an isogeny. Then K(E1)/φ∗(K(E2)) is a Galois extension.

proof.Fix T ∈ ker(φ). Let τT : E1 → E1 send P 7→ P + T . Then the map

κ : ker(φ)→ Aut(K(E1)/φ∗(K(E2))) : T 7→ τ∗T

is an isomorphism of groups, where τ∗T is the induced map on K(E1). We need to show

• κ is well defined as an automorphism.

• κ is a homomorphism

• κ is a bijection

• Let f ∈ K(E2). Then
τ∗T (φ∗f ) = (φ ◦ τT )∗f = φ∗f

since φ ◦ τT (P ) = φ(P + T ) = φ(P ) + φ(T ) = φ(P ) =⇒ φ ◦ τT = φ.

Hence, τ∗T fixes any φ∗f , i.e. is an automorphism of K(E1) over φ∗(K(E2)).

• κ(T + T ′) = τ∗T+T ′ = (τT ◦ τT ′ )∗ = (τT ′ ◦ τT )∗ = τ∗T ◦ τ
∗
T ′ = κ(T ) ◦ κ(T ′)

• Since

Aut(K(E1)/φ∗(K(E2))) ≤ [K(E1) : φ∗(K(E2))] = deg(φ) = # ker(φ)

it suffices to show, then, that κ is injective.

Suppose T ∈ ker(κ), i.e. τ∗T fixes all of K(E1). In particular, f = x has a pole at O and
no other poles. But τ∗T x = x ◦ (P 7→ P + T ) = x, so, at T , x must also have a pole. So we
conclude T = O, as desired.

Since Aut(K(E1)/φ∗(K(E2))) � ker(φ), we write

#Aut(K(E1)/φ∗(K(E2))) = # ker(φ) = deg(φ) = [K(E1) : φ∗(K(E2))]

prop 3.6Let φ : E1 → E2 and ψ : E1 → E3 be isogenies. If ker(φ) ⊆ ker(ψ), then there exists a
unique isogeny λ : E2 → E3 with ψ = λ ◦ φ.
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proof. From above, K(E1) is a Galois extension of φ∗(K(E2)) equivalent to ker(φ), and similarly
for ψ∗(K(E3)) and ker(ψ). Hence, we have the following diagram:

{1} Gal(K(E1)/φ∗(K(E2))) Gal(K(E1)/ψ∗(K(E3)))

ker(φ) ker(ψ)

⊆ ⊆

� �

⊆

By the Galois correspondence, then, ψ∗(K(E3)) ⊆ φ∗(K(E2)) ⊆ K(E1). Then ι = φ∗−1 ◦ψ∗
is an injection of function fields K(E3) ↪→ K(E2), and by [14], II.2.4, ∃!λ : λ∗ = ι, i.e.
φ∗λ∗ = ψ∗ =⇒ ψ = λ ◦ φ, as desired.

We’ll now begin to develop the basis for dual isogenies, using the results we’ve proven.

def 3.2 Let φ : E1 → E2 be an isogeny. Then we define

φ∗ : Pic0(E2)→ Pic0(E1) : (Q) 7→
∑

P ∈φ−1(Q)

eφ(P )(P ) =
∑

P ∈φ−1(Q)

(P )

Note that eφ(P ) = 1, since
∑
P ∈φ−1(Q) eφ(P ) = deg(φ) = #φ−1(Q). We need to verify that φ∗

maps degree-0 divisors to degree-0 divisors. Consider the following:

prop 3.7 deg(φ∗D) = deg(φ) deg(D).

proof. Let D =
∑
P ∈E1

nP (P ). Then

φ∗D =
∑
P ∈E1

nP
∑

Q∈φ−1(P )

eφ(Q)(Q) =⇒ deg(φ∗D) =
∑
P ∈E1

nP deg(φ) = deg(φ) deg(D)

Hence, Def 3.2 is well-defined. Recalling σi : Ei → Pic0(Ei) by P 7→ [(P ) − (O)] from the
proof of Prop 3.1, we have the diagram

E2 Pic0(E2) Pic0(E1) E1σ2

φ̂

φ∗ σ−1
1

def 3.3 Let
φ̂ = σ−1

1 ◦ φ
∗ ◦ σ2

be called the dual isogeny of φ.

prop 3.8 Let φ : E1 → E2 be an isogeny, and m = deg(φ). Then φ̂ ◦ φ = [m].
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proof.Fix Q ∈ E2, where φ(P ) = Q. Then σ (Q) = [(Q) − (O)]. Under φ∗, we have

φ∗

→
∑

S∈φ−1(Q)

(S) −
∑

T ∈φ−1(O)

(T ) =

 ∑
S∈φ−1(Q)

(S) − (O)

 −
 ∑
T ∈φ−1(O)

(T ) − (O)


σ−1

1→
∑

S∈φ−1(Q)

S −
∑

T ∈φ−1(O)

T

If φ(P ) = Q, then φ(P + T ) = Q as well, since

φ(P + T ) = φ(P ) + φ(T ) = Q + O = Q

Since P + T provide distinct points for distinct T , and #φ−1(Q) = #φ−1(O), we can write∑
S∈φ−1(Q)

S −
∑

T ∈φ−1(O)

T =
∑

T ∈φ−1(O)

P + T −
∑

T ∈φ−1(O)

T =
∑

T ∈φ−1(O)

P = deg(φ)P = [m]P

prop 3.9φ̂ is the unique map satisfying φ̂ ◦ φ = [m].

proof.We refer to Prop 3.6, with E3 = E1 and ψ = [m].

# ker(φ) = deg(φ) = m. Viewing ker(φ) as a subgroup of E1, then, every element has
degree dividing m. Hence, ker(φ) ⊆ ker[m]. It follows that there is a unique isogeny
φ̂ : E2 → E1 with φ̂ ◦ φ = [m].

prop 3.10
ˆ̂φ = φ and φ̂ ◦ ψ = ψ̂ ◦ φ̂

proof.We show, equivalently, that φ ◦ φ̂ = [m] on E2. We have

(φ ◦ φ̂) ◦ φ = φ ◦ [m] = [m] ◦ φ

since φ is a homomorphism under the group law. Then, [m] = φ ◦ φ̂ as desired.

Let deg(φ) = m and deg(ψ) = n. Then

(φ̂ ◦ ψ̂) ◦ (ψ ◦ φ) = φ̂ ◦ [n] ◦ φ = [n] ◦ φ̂ ◦ φ = [n] ◦ [m] = [nm]

prop 3.11
〈
φ, ψ

〉
:= deg(φ + ψ) − deg(φ) − deg(ψ) is bilinear.

proof.Instead of showing that this quantity is bilinear, we’ll show that [
〈
φ, ψ

〉
] is bilinear.



nicholas hayek 16

Since [] : Z→ End(E1) is injective, this suffices.

[
〈
φ, ψ

〉
] = φ̂ + ψ ◦ (φ + ψ) − φ̂ ◦ φ − ψ̂ ◦ ψ

= (φ̂ + ψ̂) ◦ (φ + ψ) − φ̂ ◦ φ − ψ̂ ◦ ψ
= φ̂ ◦ ψ + ψ̂ ◦ φ

prop 3.12 deg[m] = m2

proof. ̂[m + 1] = [̂m] + [̂1]. Hence, by induction, [̂m] = [m]. Let d = deg[m], and consider [d].

[d] = [̂m] ◦ [m] = [m]2 = [m2]

=⇒ d = m2.

In the above two propositions, we used the fact φ̂ + ψ = φ̂ + ψ̂. A proof of this is given in
Appendix A.

IV Finite Fields and Supersingularity
In this section, we will focus on the theory of elliptic curves over finite fields, culminating
in the definition of supersingularity. Supersingular curves and the isogenies between them
form the basis for cryptographic applications.

hasse’s bound

Consider an elliptic curve given by the Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 : ai ∈ Fq

Clearly #E(Fq) ≤ |Fp|2 + |{O}| = q2 + 1. We can do better: fixing x ∈ Fq, our problem reduces
to a normal quadratic in y, which has at most two solutions. Hence, #E(Fq) ≤ 2q + 1. We
can do even better. Artin introduced and Hasse proved the following in [9]:

|#E(Fq) − q − 1| ≤ 2
√
q

Before we prove this, we introduce quadratic forms:

def 4.1 A map d : A → R, where A is an abelian group, is called a quadratic form if d(a) = d(−a)
and (a, b) 7→ d(a + b) − d(a) − d(b) is bilinear.

prop 4.1 Let d be a positive-definite quadratic form. Let L(a, b) = d(a − b) − d(a) − d(b). Then
|L(a, b)| ≤ 2

√
d(a)d(b)



17 finite fields and supersingularity

proof.Since d is positive definite, we can write

0 ≤ d(ma − nb) = m2d(a) + mnL(a, b) + n2d(b)

Now, setting m = −L(a, b) and n = 2d(a), we find

0 ≤ d(a)[4d(a)d(b) − L(a, b)2]

Hence, when a , 0, we have that the RHS is positive, and hence 4d(a)d(b) − L(a, b)2 ≥ 0,
so we conclude that |L(a, b)| ≤ 2

√
d(a)d(b).

Returning to the main result:

prop 4.2|#E(Fq) − q − 1| ≤ 2
√
q

proof.Consider φ : E → E by (x, y) 7→ (xq, yq). Fundamentally, this is a map from E → E(q),
where E(q) replaces E’s coefficients ai with a

q
i . However, since ai ∈ Fq, we have that

φ(ai) = ai . So, indeed, φ : E → E.

The elements in E(Fq) are given by those that are fixed by the Frobenius map φ, i.e.
E(Fq) = ker(Id − φ). We write, then

#E(Fq) = # ker(Id − φ) = deg(Id − φ)

Noting that deg(φ) = q and deg(Id) = 1, this yields

|#E(Fq) − q − 1| = |deg(Id − φ) − deg(φ) − deg(Id)|

But we’ve shown that deg : Hom(E1, E2)→ Z is a positive-definite quadratic form in
Prop 3.11, so we use Prop 4.1 to conclude

|#E(Fq) − q − 1| ≤ 2
√

deg(φ) deg(Id) = 2
√
q

as desired.

We proceed now with a series of examples and applications utilizing Hasse’s bound, some
of which will come in handy later:

Eg. 4.1.1 #E(Fq) ≈ q + 1, by observing

q + 1 − 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q

Hence, by choosing a large prime power q, we may guarantee a large solution
set E(Fq). This is the basis for the hardness problem posed below in 4.1.4.
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Eg. 4.1.2 Let E : y2 = f (x) := ax3 + bx2 + cx + d, with a, b, c, d ∈ Fq, which has distinct
roots in Fq. Consider the multiplicative group F∗q, and the order 2 character

χ(a) =

1 a is a square

−1 o.w.

defined on F∗q. We can use χ to count E(Fq): if f (x) is a square, then we see 2
solutions for y in Fq; if it is not, then there are no solutions; if f (x) = 0, then
we have 1 solution. Hence,

#E(Fq) = 1 +
∑
x∈Fq

(1 + χ(f (x))) = 1 + q +
∑
x∈Fq

χ(f (x))

where we extend χ by writing χ(0) = 0.

It follows by Hasse’s bound (Prop 4.2) that∣∣∣∣∣∣∣∣
∑
x∈Fq

χ(f (x))

∣∣∣∣∣∣∣∣ ≤ 2
√
q

This hints at the fact that solutions to f (x) will have squares and non-squares
distributed evenly: the expected value of the sum of a random sequence of 1s
and -1s is

√
q.

Eg. 4.1.3 Consider E/F7 : y2 = x3 + 2. We list the possible values for x3 + 2:

x x3 + 2 mod 7 square?

0 2 32 = 2
1 3 no
2 3 no
3 1 12 = 1
4 3 no
5 1 12 = 1
6 1 12 = 1

So our solutions are

{O, (0, 3), (0,−3), (3, 1), (3,−1), (5, 1), (5,−1), (6, 1), (6,−1)}

All of these points satisfy [3]P = O (to see this, deg[3] = 9 = ker([3]), and
we have only 9 solutions above to choose from), so we conclude that E(F7) �
Z3 × Z3, where O = (0, 0).
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Eg. 4.1.4 Over finite fields, elliptic curves may be used to encrypt messages. To do
so, we consider a some intractable task. Assume Q = [m]P , where P ∈ E(Fq).
Determining m exactly is a hard task, especially for large q (when q is small,
just test each m). This is the basis of the following protocol:

1. E and P ∈ E(Fq) are public. Alice wants to send a message (say, M ∈
E(Fq)) to Bob.

2. Bob has d as a private key and publishes Q = [d]P .

3. Alice picks a random integer k and computes R = [k]P and S = M + [k]Q.
She sends this to Bob.

4. Bob recovers M by computing S + [−d]R:

S + [−d]R = M + [k][d]P + [−d][k]P = M

If someone intercepts a message, they would have to find the integer d : Q =
[d]P to crack the code. This algorithm (an adaptation of the ElGamal system)
is an early application of elliptic curves to cryptography ([10]).

supersingular elliptic curves

def 4.2Let E/F be an extension. Then let S = {α ∈ E : α is separable over F}. Then E/S/F, with
E/S a purely inseparable extension and S/F a purely separable extension.

def 4.3Let φ : (x, y) 7→ (xp, yp) be a morphism from E → E(p). Let K be a perfect field of character-
istic p. φ is purely inseparable.

proof.We first claim that φ∗(K(E)) = K(E)p = {αp : α ∈ K(E)}.

We may view K(E) as quotients f
g of homogeneous polynomials f , g of the same degree.

Hence, under the map φ∗, we have

f (x0, ..., xn)
g(x0, ..., xn)

7→
f (xp0 , ..., x

p
n)

g(xp0 , ..., x
p
n)

However, elements in K(E)p are
f (x0, ..., xn)p

g(x0, ..., xn)p

But since K is perfect, all its elements are a pth power, so

K(x0, ..., xn)p = K(xp0 , ..., x
p
n)

as sets. Its fraction fields, then, are also equivalent.
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Consider now the extension [K(E)/K(E)p]. Let α ∈ K(E). It has a minimal polynomial
tp − αp in K(E)p[t]. But in the larger field, this is (t − α)p. Hence, α is inseparable, and
we are done.

def 4.4 Let E be an elliptic curve and char(K) = p. Then E[p] = {O} or E[p] � Z/pZ.

proof. Let φ be the pth-power Frobenius morphism. We have

#E[p] = # ker[p] = degs[p]

= degs(φ̂ ◦ φ) = [degs(φ̂) degs(φ)]

Here, we reintroduce the notion of separability degree, since the Frobenius homomor-
phism is inseparable. Recall that deg(φ) = deg(φ̂) = p.

Suppose that φ̂ is separable. Then deg(φ̂) = degs(φ̂) = p, so #E[p] = degs(φ̂) = p.
However, if φ̂ is inseparable, then #E[p] = 1. In this latter case, its clear that E[p] = {O}.

If φ̂ is separable, then E[p] = Z/pZ, by structure theorem. (It’s equivalent to a product
of cyclic groups, whose orders divide eachother—but p is prime).

We remark that #E[pr] = 1 or pr by identitcal arguments, in which case E[pr] = {O} or
Z/prZ. The separability of φ̂ remains the deciding factor, so if E[pr] = {O}, for some r,
E[pr ] = {O} for all r.

prop 4.3 Let E be an elliptic curve and char(K) = p. Let φr be the pr-power Frobenius map. Then
the following are equivalent:

1. E[pr ] = {O} for r = 1, 2, ...

2. φ̂r is purely inseparable for r = 1, 2, ...

3. [p] : E → E is purely inseparable and j(E) ∈ Fp2

proof. (1 ⇐⇒ 2) Suppose E[pr] = {O}. Then φ̂r must be inseparable, or else #E[pr] =
degs(φ̂r ◦ φr ) = pr . We’ve already proven the converse.

(2 =⇒ 3) For free, we get that φ̂ ◦ φ = [p] is purely inseparable. Hence, we just need
to show that j(E) ∈ Fp2 . Consider

E(p) E

E(p2)

φ̂

φ1 ψ

We claim that φ̂ factors as ψ ◦ φ1, where ψ is some separable map.
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Consider an arbitrary map λ : E1 → E2 of smooth curves over characteristic p, with
degi(λ) = p.

We claim it factors as E1
φ
−→ E

(p)
1

ψ
−→ E2, where φ is the pth power Frobenius morphism,

and ψ is separable. We have, by our previous result,

K(E1)p = φ∗(K(E(p)
1 )) and [K(E1) : φ∗(K(E(p)

1 ))] = deg(φ) = p

where the latter extension is purely inseparable. Let K be the separable closure of
λ∗(K(E2)) inside K(E1). Then K(E1)/K is purely inseparable of degree p = degi(λ), so it
follows that K(E1)p ⊆ K. Then, K(E1)(p) ⊆ K, since all elements in a purely separable
extension are necessarily prime powers of the base field. Denoting the degree of an
extension as (separable, inseparable), we have

K(E1)

K K(E1)p = φ∗(K(E(p)
1 ))

λ∗(K(E2))

(1,p)
(1,p)

⊇

So we get a tower of fields
K(E1)

φ∗(K(E(p)
1 ))

λ∗(K(E2))

Then, because we have an injection of fields, we know there are associated unique
isogenies. Consider each at a time:

1. For the injection λ∗ : K(E2) ↪→ K(E1), λ : E1 → E2 is our given isogeny.

2. For the injection φ∗ : K(E(p)
1 ) ↪→ K(E1), φ : E1 → E

(p)
1 is the Frobenius morphism,

as given.

3. For the injection φ∗−1λ∗ : K(E2) ↪→ K(E(p)
1 ), we set ψ∗ = (λ ◦ φ−1)∗, implying

λ = ψ ◦ φ, as desired. Since this extension is purely separable, so is the isogeny ψ.



nicholas hayek 22

Returning to our setting, we have

E(p) E

E(p2)

φ̂

φ1 ψ

since p = degi(φ̂) by assumption. ψ is separable by the result above, so its inseparability
degree is 1. But since degs(φ̂) = 1 = degs(φ1) degs(ψ), we have that deg(ψ) = 1.
All maps of degree 1 must be isomorphisms, since then ψ∗ : K(E) � K(E(p2)) is an
isomorphism of function fields.

Hence, as isomorphic elliptic curves, j(E) = j(Ep
2
) = j(E)p

2
, since we raise all coeffi-

cients to the p2-th power. Recall that all fields Fq are characterized by elements α with
αq = α, so we conclude that j(E) ∈ Fp2 .

(3 =⇒ 2). For the converse, if [p] is purely inseparable, then φ̂ must be, since φ is
inseparable. And we are done.

def 4.5 If an elliptic curve E satisfies Prop 4.3, we say it is supersingular. Otherwise E is ordinary.

prop 4.4 Given a field K of characteristic p, there are finitely many supersingular curves E.

proof. If E is supersingular, then j(E) ∈ Fp2 . Hence, we can have up to p2 supersingular curves
up to isomorphism, by Prop 2.1.

We turn to a more concrete way of detecting supersingular curves, which will eventually
allow us to count, exactly, the number of such curves in a given characteristic (Thm 4.2).

4.1 Algebraic Characterization of Supersingularity

Let Fq be a field of characteristic p ≥ 3. Let E/Fq be an elliptic curve in Weierstrass
form given by y2 = f (x), where f is a cubic polynomial with distinct roots.

E is supersingular ⇐⇒ the coefficient of xq−1 in f (x)
q−1

2 is zero.

proof. We take the following as a black-box theorem, from the study of invariant differentials.
Let E/Fq be an elliptic curve. Let φ be the qth-power morphism. Then, for m, n ∈ Z,
[a] + [b]φ is separable ⇐⇒ a .p 0. ⋆

Recall the character
χ : F∗q → {−1, 1}
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that sets α to −1 for non-squares, and 1 otherwise. Extend it to the full field Fq by
setting χ(0) = 0. Recall Example 4.1:

#E(Fq) = 1 + q +
∑
x∈Fq

χ(f (x))

But F∗q, the multiplicative group, is cyclic of order q−1, so zq−1 = 1 for z ∈ F∗q. Therefore,
by Euler’s Criterion,

z
q−1

2 =

−1 z non-square mod q

1 z square mod q

For z = 0, we can extend this by observing 0
q−1

2 = 0, and hence

#E(Fq) = 1 + q +
∑
z∈Fq

f (z)
q−1

2 ≡p 1 +
∑
z∈Fq

f (z)
q−1

2

Since f is a cubic, f (x)
q−1

2 may have terms like xn for 0 ≤ n ≤ 3
2 (q − 1). Hence, q − 1|n

only when q − 1 = n. Utilizing the cyclic nature of F∗q, we have

∑
x∈Fq

xi =

−1 q − 1|i
0 o.w.

Summing over x ∈ Fq, then, we see that the only non-zero terms come from xq−1, so

#E(Fq) ≡p 1 + (−1) · Aq = 1 − Aq : Aq = coefficient of xq−1 in f (x)
q−1

2

On the other hand, #E(Fq) = deg(1−φ) = 1− a+ q, where φ is the qth power morphism,
and a = 1 − deg(1 − φ) + deg(φ). Modulo p, then, Aq = a, and we conclude a ≡p 0 ⇐⇒
Aq = 0.

Why is it that #E(Fq) = deg(1 − φ)? This is # ker(1 − φ) = #{(x, y) ∈ E : (xq, yq) = (x, y)},
which precisely describes points (x, y) which appear in Fq (recall that Fq is the splitting
field of xq − x). We write

[1 − a + q] = 1̂ − φ ◦ (1 − φ) = 1 − φ̂ − φ + φ̂φ

Since [m]P =

p times

P + ... + P , [m + n]P = [m]P + [n]P . Hence,

Id − [a] + [q] = Id − φ̂ − φ + [q] =⇒ [a] = φ̂ + φ

So a ≡p 0 ⇐⇒ φ̂ is inseparable, using ⋆, and this holds if and only if E is supersingular.
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As it turns out Aq = 0 ⇐⇒ Ap = 0, so the theorem holds when q is replaced by p.

prop 4.5 Let m = p−1
2 . Define

Hp(t) =
m∑
i=0

(
m
i

)2

ti

Then, the elliptic curve

E : y2 = x(x − 1)(x − λ) : λ , 0, 1

is supersingular ⇐⇒ Hp(λ) = 0.

proof. We will use Thm 4.1. In particular, E is supersingular ⇐⇒ the coefficient of xp−1 in
[x(x − 1)(x − λ)]m is 0.

Write xm(x − 1)m(x − λ)m = xmg(x). The coefficient of xm in g(x) will give (when
multiplied by xm), the coefficient of x2m = xp−1 in the original equation.

g(x) = (x − 1)m(x − λ)m =⇒ c : cxm ∈ g(x) =
m∑
i=0

(
m
i

)
(−λ)i

(
m

m − i

)
(−1)m−i

For this, recall that

(x − λ)m =
m∑
i=0

(
m
i

)
xm−i(−λ)i and (x − 1)m =

m∑
j=0

(
m
j

)
xm−j(−1)j

Hence, to find the xm term in (x − 1)m(x − λ)m, we multiply each LHS summand i with
the RHS summand for j = m − i. Substituting, then, yields the result. We compute:

m∑
i=0

(
m
i

)
(−λ)i

(
m

m − i

)
(−1)m−i =

m∑
i=1

(
m
i

)2

λi(−1)m

which equals Hp(λ) up to a sign.

Eg. 4.2.1 Consider E/F3 by y2 = x3 − x. This factors, mod 3, as x(x + 1)(x + 2). With
distinct roots, we are able to invoke Thm 4.1. The coefficient of xp−1 = x2 in
(x3 − x)

3−1
2 = x3 − x is 0, so x3 − x is indeed supersingular. We can calculate its

j-invariant directly. Ignoring the x2 and 1 coefficients:

j(E) =
2833 · 1

4
= 1728 ≡9 0

Hence, j(E)2 ≡9 j(E), and j(E) ∈ Fp2 .
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Eg. 4.2.2 However, over F5, 1728 is 3 mod 5, and j(E)2 is 2,985,984, which is 4 mod
5. So j(E) < Fp2 . We conclude that y2 = x3 − x cannot not be supersingular.

Indeed, (x3 − x)
5−1

2 = (x3 − x)2 has a p − 1 = 4th power coefficient.

4.2 Counting Supersingular Elliptic Curves

Let K be a characteristic p ≥ 5 field. The number of supersingular elliptic curves, up
to isomorphism, is exactly

N =
⌊ p

12

⌋
+


0 p ≡12 1

1 p ≡12 5, 7

2 p ≡12 11

If char(K) = 3, then there is only one supersingular curve.

Before we prove this, we prove the following:

prop 4.6Let Eλ : y2 = x(x − 1)(x − λ) be an elliptic curve, where char(K) , 2. Then every elliptic
curve Ê is isomorphic to Eλ for some λ , 0, 1 ∈ K .

proof.Recalling Example 2.1, since char(K) , 2, we can write Ê as

y2 = 4x3 + b2x
2 + 2b4x + b6

Replacing (x, y) 7→ (x, 2y) yields

y2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4

which, as a monic cubic, may be factored as

y2 = (x − e1)(x − e2)(x − e3) : ei ∈ K ⋆

The discriminant of this equation, 16(e1 − e2)2(e2 − e3)2(e3 − e1)2, is non-zero by the
smoothness assumption, so all roots are distinct. Finally, we perform the transformation

(x, y) 7→
(
(e2 − e1)x + e1, (e2 − e1)

3
2 y

)
This yields, on the RHS of ⋆:

(e2 − e1)x ((e2 − e1)x + e1 − e2) ((e2 − e1)x + e1 − e3)

=(e2 − e1)3
[
x(x − 1)

(
x +

e1 − e3

e2 − e1

)]
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and, on the LHS, (e2 − e1)3y2. Canceling, we have

y2 = x(x − 1)
(
x +

e1 − e3

e2 − e1

)
as desired.

prop 4.7 The map η : K \ {0, 1} → K by λ 7→ j(Eλ) is surjective and six-to-one. (Except at j = 0, 1728,
which are two-to-one and three-to-one, respectively).

proof. We compute the j-invariant of x(x − 1)(x − λ) to be

j(Eλ) =
162(λ2 − λ + 1)3

λ2(λ − 1)2

Since the j-invariant is always written this way, the map is surjective. We also observe
that (1 − λ) and 1

λ preserve the map:

1
λ

:

(
1−λ+λ2

λ2

)3

1
λ2

(λ−1)2

λ2

1 − λ :
(λ2 − λ + 1)3

(1 − λ)2(−λ)2

so therefore 1
1−λ and 1 − 1

λ = λ−1
λ preserve the map, and hence also λ

λ−1 . This provides
us with all six (by including λ) mappings:

{
λ, 1

λ , 1 − λ,
1

1−λ ,
λ−1
λ , λ

λ−1

}
.

When j = 0, λ2 − λ + 1 = 0 =⇒ λ2 = λ − 1. But then λ2 = (λ − 1)2 = λ2 − 2λ + 1 = −λ,
and hence

1 − λ = −λ2 = λ
1

1 − λ
=
−1
λ2 =

1
λ

λ − 1
λ

=
λ2

λ
= λ

λ
λ − 1

=
1
λ

which makes η two-to-one. When j = 1728, we have λ = −1. But then our mappings
are {

−1,−1, 2,
1
2
, 2,

1
2

}
which makes η three-to-one.

prop 4.8 Fix a field of characteristic p ≥ 5. Let

ε(j) =

1 Eλ : j(Eλ) = j is supersingular

0 otherwise

Then

ε(0) =

0 p ≡3 1

1 p ≡3 2
ε(1728) =

0 p ≡4 1

1 p ≡4 3
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proof.The curve y2 = x3 + 1 has j-invariant 0:

j(y2 = x3 + Ax + B) =
2833A3

4A3 + 27B2

For which values of p is y2 = x3 + 1 supersingular? We know, by a previous criterion,

that we should look for coefficient of xp−1 in (x3 + 1)
p−1

2 . If p ≡3 2, then we find terms
of powers x3k by the binomial theorem. But p − 1 ≡ 1, so no such powers exist in the
expansion. Hence, y2 = x3 + 1 is supersingular.

Now suppose p ≡3 1. Then p−1
2 ≡ 0. By the binomial theorem, again, the p − 1th power

has coefficient ( p−1
2
p−1

3

)
by setting 3k = p − 1. So y2 = x3 + 1 is ordinary.

The curve y2 = x3 + x has j-invariant 1728:

2833 · 1
4

= 1728

We rewrite x(x2 + 1). The coefficient of xp−1 in [x(x2 + 1)]
p−1

2 is equivalent to the

coefficient of x
p−1

2 in x2 + 1. By the binomial theorem, terms in (x2 + 1)
p−1

2 have powers

x2k. When p ≡4 3, then p−1
2 ≡4 1. But 2k ≡4 2 or 4. Hence, no p−1

2
th

power exists, and
the curve is supersingular.

By the binomial theorem, the p−1
2
th

term has coefficient( p−1
2
p−1

4

)
by setting 2k = p−1

2 . So y2 = x3 + x is ordinary.
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We now return to the proof of Thm 4.2:

proof. Recall the definition of Hp(t):

Hp(t) =
m∑
i=0

(
m
i

)2

ti m :=
p − 1

2

In Fq, this has distinct roots. Each root λ will give a supersingular polynomial

Eλ : y2 = x(x − 1)(x − λ)

Hp(t) has m = p−1
2 distinct roots. For almost all choices of λ, the map η : λ 7→ j(Eλ)

is six-to-one, so our discussions above yield 1
6 ·

p−1
2 = p−1

12 supersingular curves up to
isomorphism. However, we need to account for j-invariants 0 or 1728.

Suppose that the elliptic curve associated to j-invariant 0 is supersingular, but that of
1728 is ordinary. Hp(λ) has p−1

2 roots. How many of those roots are dedicated to E0?

If E0 is supersingular, then η−1(0) is a root of Hp(t). But η−1(0) has size two by our
discussion, so we identify two roots {λ′ , λ} of Hp(t) whose elliptic curves Eλ � Eλ′ have
j-invariant 0. All (p − 1)/2 − 2 other roots belong to j-invariants not 0 or 1728, so we have

1
6

(p − 1
2
− 2

)
+ 1

total supersingular curves, where the "+1" accounts for Eλ itself. Following this logic,
and adapting notation, our number of curves is exactly

N =
1
6

(p − 1
2
− 2ε(0) − 3ε(1728)

)
+ ε(0) + ε(1728)

=
p − 1

12
+

2
3
ε(0) +

1
2
ε(1728)

Note that ε relies on the characteristic p. Reworking the result of Prop 4.8, we have

(ε(0), ε(1728)) =


(0, 0) p ≡12 1

(1, 0) p ≡12 5

(0, 1) p ≡12 7

(1, 1) p ≡12 11

=⇒ N =
p − 1

12
+


0 p ≡12 1
2
3 p ≡12 5
1
2 p ≡12 7
7
6 p ≡12 11

To yield the final result, we do case analysis. When p = 3, H3(t) = 1 + t, so only
y2 = x(x − 1)(x + 1) = x3 + x is supersingular.
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V Supersingular Isogeny Graphs

Isogenies, as homomorphisms, preserve supersingularity: if P ∈ E1[p], then p(P ) = O1.
However, then, [p]P = φ([p]P ) = O2, where φ : (E1,O1) → (E2,O2). (See Prop 4.3). This
allows us to consider the graph of isogenous supersingular curves of a specified degree:

def 5.1Fix a field Fp. Let Gℓ(p) = (V , E) be the graph such that V = {supersingular curves over Fp}
and uv ∈ E if and only if there exists a degree-ℓ isogeny φ : Eu → Ev , where ℓ is prime. We
typically let u ∈ V be represented by a j-invariant. Gℓ(p) is called an ℓ-isogeny graph.

def 5.2Let E[n] : {P ∈ E : [n]P = O}, and call a point Q ∈ E[n] an n-torsion point.

prop 5.1Gℓ(p) is an undirected graph which is (ℓ + 1)-regular, up to automorphism.

proof.Prop 3.8 guarantees that uv ∈ E ⇐⇒ vu ∈ E by taking the dual. By Prop 3.2, an
isogeny φ : E → Ei is a homomorphism. As a morphism, it is also surjective, and so
E/ ker(φ) = Ei . Since ℓ is prime, φ must be separable.

By Prop 3.4, # ker(φ) = ℓ, so [ℓ]P = O for P ∈ ker(φ). Hence, ker(φ) < E[ℓ], and we
therefore associate subgroups of E[ℓ] with separable isogenies. How many subgroups
exist?

E[ℓ] � (Z/ℓZ)2. We know by Prop 3.12 that deg[ℓ] = # ker([ℓ]) = #E[ℓ] = ℓ2. Since E[ℓ]
is abelian, this leaves (Z/ℓZ)2 or Z/ℓ2Z. The former would suggest an element of order
ℓ2, which cannot exist in E[ℓ], so the result follows.

There are ℓ + 1 subgroups of (Z/ℓZ)2, and the result follows. If E has an extra automor-
phism ι (which is true when j = 0 or j = 1728), then it may be that unequal kernels
quotient to the same elliptic curve by post-composing ιi with this automorphism.

prop 5.2Gℓ(p)) has
⌊
p

12

⌋
+


0 p ≡12 1

1 p ≡12 5, 7

2 p ≡12 11

vertices, all in Fp2 .

proof.Direct from Thm 4.2 and Prop 4.3.

From this point onward, we will focus on G2(p), detailing some special properties essential
to their computation and a foundational cryptographic application.
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Figure 3: G2(83). Notice the extra automorphisms of j = 0 and j = 1728.

prop 5.3 Let φ : E1 → E2 be such that E1/ ⟨P ⟩ = E2 for P ∈ E1[2]. Then φ(Q1) = φ(Q2) ∈ E2[2] for
the other two non-trivial torsion points Qi ∈ E1[2]. Furthermore, ker(φ̂) =

〈
φ(Qi)

〉
.

proof. Since φ is a homomorphism in E1, we have [2]φ(Q1) = φ([2]Q1) = φ(O1) = O2 =⇒
φ(Qi) ∈ E2[2]. Furthermore, since E1[2] � (Z/2Z)2, P + Q1 = Q2. Hence, under the
quotient map, Q1 ∼ Q2.

The dual φ̂ satisfies φ̂ ◦ φ(Qi) = [2]Qi = O1, so indeed ker(φ̂) =
〈
φ(Qi)

〉
, and we can

reverse the isogeny by quotienting E2/
〈
φ(Qi)

〉
.

prop 5.4 Let ⟨P ⟩ < E be an order 2 subgroup of E : y2 = x3 + Ax + B, with char(K) , 2,3 and
P = (x0, 0) ∈ E. Then E/ ⟨P ⟩ is given by

y2 = x3 + (A − 5t)x + (B − 7x0t)

where t = 3x2
0 + A, under the mapping

(x, y) 7→
(
x2 − x0x + t
x − x0

,
(x − x0)2 − t

(x − x2
0)

y

)

proof. These formulas are proven in generality for finite subgroups of E in [15].

def 5.3 Let α ∈ Fp2 . We define a magnitude S(α) := a + br, where a, b ∈ Fp, and α is written
uniquely as a+ b

√
r, where we view Fp2 � Fp/⟨x2 − r⟩ for some non-quadratic residue r.
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5.1 RandomWalks on a 2-Isogeny Graph

We outline a procedure for traversing a 2-isogeny graph, while minding not to back-
track. Let p ≥ 5 be a prime, and let r be a fixed non-quadratic residue in Fp. Let
N0,1 ∈ {0,1} be a random distribution. Denote by Ej the supersingular curve with
j-invariant j.

Require: Prime p ≥ 5, non-quadratic residue r, N bits sampled from N0,1.
Ensure: A walk of length N along the 2-isogeny graph, with nodes in Fp2 .

1: if p ≡12 1 then
2: see Prop 6.1
3: else if p ≡12 5 then
4: jprev ← 0
5: Pprev ← (1, 0)
6: else ▷ p ≡12 7, 11
7: jprev ← 1728
8: Pprev ← (0, 0)
9: for i ∈ [N ] do

10: b← N0,1
11: T ← 2-torsion points on Ejprev

12: Q← argminQ∈T \{Pprev}S(Qx) · (−1)b, where Q = (Qx, Qy)
13: φ← quotient map Ejprev

↠ Ejprev
/ ⟨Q⟩ ▷ by Vélu

14: jprev ← φ(Ejprev
)

15: Pprev ← φ(Q)
16: output jprev

proof.We begin the algorithm by finding an explicit supersingular curve in characteristic p.
Prop 4.8 outlines suitable choices except when p ≡12 1, which we will investigate in
the next section. (Lines 1-8).

Def 5.2 provides an ordering on elements in Fp2 , allowing us to choose between two
isogenous curves (not including the one previously visited), corresponding to two
2-torsion points. (Lines 10-13).

Prop 5.3 tells us that, if we quotient by φ(Pprev), we will return to Ejprev
(Line 15).

When we feed this algorithm a string of bits to replace N0,1, we produce an interesting
hashing function.

def 5.4Let B be a string of N = ⌊log2(p)⌋ bits. Traverse along G2(p) according to Thm 5.1, replacing
Line 10 with b ← B[i]. Let j be the final output of the algorithm. Then let Hp : B 7→ j be
called the CGL hash function, as formulated in [4].

One should choose some embedding of the final j-invariant into Fp. For our purposes, we
will simple refer to the j-invariant itself (e.g. H277(01000111) = 261 + 198a).



nicholas hayek 32

VI Implementation and Results
The algorithm provided is useful for two reasons: it generates all supersingular j-invariants
via the Monte Carlo method (e.g. traverse G2(p) until we find the number of nodes detailed
in Thm 4.2); and it can hash binary strings, as in Def 5.3. We will discuss G2(p) in light of
these uses, and provide details on our implementation.

arithmetic of graph generation

The algorithm in Thm 5.1 was implemented in Python without the use of any symbolic
algebraic tools (Sage, Magma, etc.). We outline the process here, and demonstrate some
computational results:

1. Fp2 is implemented as the splitting field Fp/⟨x2 − r⟩ for some non-quadratic residue r
mod p. We perform operations on (a + b

√
r) in the typical way, e.g.

(a + b
√
r)−1 = a(a2 − rb2)−1 − b(a2 − rb2)−1√r

2. In (1), we require inverses in Fp. Computing α−1 mod p is equivalent to finding x
such that

αx + py = 1

which is Bézout’s identity. Hence, we perform the Euclidean algorithm on gcd(α, p)
and recover (x, y). This runs in O(log(α)), an improvement of the naive solution, i.e.
trying combinations in O(p).

3. Supposing jprev = (x0,0) and Pprev are known, we need to identify the two other
torsion points on Ejprev

: y2 = x3 + Ax + B. Roots of the form (x, 0) have order 2, since
the tangent line there passes through O. Hence, factoring out x0 yields

x2 + x0x + (A + x2
0)

which has discriminant −3x2
0 − 4A =⇒ x = −x0±

√
−3x2

0−4A
2 .

4. In (3), we require a square root function over Fp. A generalized version of the
Tonelli-Shanks algorithm for even extensions of Fp, detailed in [1], is employed here.
Note that this requires a square root function in Fp, for which we use the typical
Tonelli-Shanks. Exponentiation is essential to both algorithms—for this, we adapt a
square-and-multiply technique.

generating supersingular j -invariants when p ≡12 1

We discuss Line 2 of Thm 5.1: given p ≡12 1, how can we generate a supersingular elliptic
curve in Fp and one of its 2-torsion points?
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prop 6.1Consider a quadratic imaginary field K . Let E be an elliptic curve in K with complex
multiplication. Then E has a good reduction in Fp, where j(E) ∈ Z if K has class number
one. In particular, if p is inert in K , then the reduction is supersingular.

proof.Reductions of curves are covered in II.6 of [13], and the full "complex multiplication
method" to generating supersingular curves in [2] and [5].

Eg. 6.1.1 j(1+
√
−d

2 ) is a good example of a complex j-invariant in K = Q(
√
−d), where j

is the j function. The class one fields of this form are exactly d ∈ {1, 2, 3, 7, 11,
19, 43, 67, 163} (the "Heegner numbers", see [6]).

Eg. 6.1.2 When d = 1, i.e. in Q(i), we consider j(1+
√
−1

2 ) = 1728. We know this curve
has complex multiplication (an automorphism of order 2). p is inert when
−1 is a non-square residue in Fp, which occurs when p ≡ 3 mod 4. This is
consistent with Prop 4.8.

Eg. 6.1.3 Examples of complex j-invariants for Q(
√
−d), written (−d, j), are

(−1, 1728) (−3, 0) (−2, 8000) (−7,−3375) (−11,−32768)

Once a suitable j-invariant is found, we can reconstruct the elliptic curve, where j , 1728:

y2 = x3 −
3j

j − 1728
x +

2j
j − 1728

The first root of this equation can be solved naively via brute force, with the general cubic
formula, etc., to find the first torsion point. This slow down is negligible in a traversal of
G2(p), as it only is required for the initial j-invariant.

prop 6.2The primes for which, in light of Prop 4.8 and Prop 6.1, we cannot yet identity a supersin-
gular elliptic curve have density 2−9 ≈ 0.001953.

proof.We find a supersingular reduction in Fp from a class one quadratic field Q(
√
−d) if an

only if (
−d
p

)
= −1

where
(
·
·

)
is the Legendre symbol. When d ≥ 3 is a prime, we have, by quadratic

reciprocity, (
−d
p

) (−p
d

)
= (−1)

p−1
2 (−1)

d−1
2

(
d
p

) (p
d

)
= (−1)p−1(−1)q−1 = 1

Hence, asking whether −d = x2 in Fp is equivalent to asking whether −p = x2 in Fq.
For fixed p, then, the probability that −p it is a quadratic residue in any given field Fd
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is 1
2 . Considering over all class one fields gives the result.

The first 10 primes p for which neither 1728 nor 0 are supersingular j-invariants in Fp, nor
do any integer ones exist via a reduction in a quadratic imaginary field, are:

i : p = ith prime p

1760 15073
2100 18313
4091 38833
6883 69337
7090 71593

i p

9603 100153
10131 106297
10216 107209
10322 108529
10581 111577

Notice that these are all p ≡12 1. The empirical density of these primes is 0.001694 over the
first 500,000 primes, which is consistent with Prop 6.2.

traversing G2(p)

A typical hash appears as a path P ∈ Gp(2), since our prime p (and therefore |V (G2(p))|) is
exponential in traversal length. For instance:

Figure 4: H53993(0000110101001011) = 27175 + 19016a

Occasionally, we find loops, i.e. 2-isogenies φ : Ej → Ej . When j = 1728, we observe an
extra automorphism via complex multiplication, and so all G2(p) : p ≡4 3 contain this loop.
We find more examples by considering the modular polynomial Φ2(x, y), as detailed in
Exercise 2.18 of [13]. All cyclic 2-isogenies φ : Ex → Ey , are represented by the roots of this
polynomial, which factors as

Φ2(x, x) = −(x + 3375)2(x − 1728)(x − 8000)

Notice that these correspond to curves in Q(
√
−d) with complex multiplication for d =

−1,−2, and −7 (Example 6.1). In Figure 3,
(
−7
83

)
= −1, and hence −3375 ≡83 28 has a loop.
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finding collisions in G2(p)

When hashing, we care that finding the preimage of our output (the traversal taken to reach
our final j-invariant) is hard, and that finding a collision (e.g. two 2k-isogenies between
curves for k < N ) is hard.

The former problem is equivalent to computing the endomorphism ring of a given output
curve E, a problem which is exponential in p ([7], [3]). The latter problem is made hard by
ensuring no cycles of bounded length 2N exist containing our initial j-invariant.

def 6.1Let Ep be the initial supersingular elliptic curve generated by Thm 5.1. Let N = ⌊log2(p)⌋.
Let φ, φ̃ be two 2N -degree isogenies from Ep corresponding to a cycle of length 2N in G2(p).
Then G2(p) has a hard collision.

Eg. 6.2.1 The first prime for which G2(p) contains a hard collision is 277, which has
71 offending isogenies of degree ℓ2N = 216. In other words, there exist
71 collisions of 8 bit binary input hashes. Since 277 ≡12= 1, this curve
was generated with an initial j-invariant 244, corresponding to a complex
multiplication reduction from Q(

√
−7).

Figure 5: One of 71 hard collisions in G2(277)

Here, both 01000111 (going "right" from 244) and 11100001 (going "left") hash
to the j-invariant 261 + 198a.

Eg. 6.2.2 Finding hard collisions is computationally equivalent to reversing the hash.
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However, one may instead find a small cycle containing two points along a
given traversal to yield, by stitching, two (non-disjoint) 2N isogenies. This
attack is more concerning.

The absence of cycles of short length can be guaranteed by choosing p op-
timally relative to ℓ. In [4], G2(p) : p ≡420 1 is shown to have no distinct
2-isogenies between two curves, corresponding to cycles of length 2. (G2(421)
still contains 2,159 cycles of length < 2⌊p⌋.)

Figure 6: a short cycle collision in G2(421)
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appendix a

Let φ, ψ : E1 → E2 be isogenies of elliptic curves E1, E2. Then φ̂ + ψ = φ̂ + ψ̂. Before we
prove this, we consider another proposition, which will be useful.

Recall Div0(E), the class of divisors of degree-0 on E. Denote

D =
∑
P ∈E

nP (P )

Then, if
∑
P ∈E[nP ]P = O, as in the group law, then D = 0 modulo principle divisors.

proof.Recall that every degree-0 divisor is equivalent to (P ) − (O) mod principle divisors (we
proved this earlier). Hence, [D] = 0 ⇐⇒ σ−1(D) = O, where σ−1 maps D → P , as
above.

This holds, then, ⇐⇒ σ−1 (
∑
P ∈E nP (P )) = O. We proved earlier that addition under

Pic0(E) is compatible with addition under the group law, i.e.

σ−1

∑
P ∈E

nP (P )

 =
∑
P ∈E

[nP ]σ−1((P ) − (O)) =
∑
P ∈E

[nP ]P = O

and we’re done.

Now for φ̂ + ψ = φ̂ + ψ̂. In particular, we will show that (φ + ψ)∗ = φ∗ + ψ∗.

proof.Recall that φ, ψ, as isogenies, are especially morphisms of E1 → E2. In particular, they
are rational maps.

Recall also the mapping

φ∗ : Pic0(E2)→ Pic0(E1) : (Q) 7→
∑

P ∈φ−1(Q)

(P ) mod principle divisors

Consider x1, y1, the Weierstrass coordinates of E1 that provide the isomorphism

E1 → P2 : P 7→ [x1(P ), y1(P ), 1]

As an extension of K , we consider the K(E1) = K(x1, y1)-rational points on E1 and E2.
Note that (x1, y1) itself is a K(x1, y1)-rational point on E1.

(φ + ψ)(x1, y1) φ(x1, y1) ψ(x1, y1)

are all mapped to K(x1, y1)-rational points on E2, i.e. in E2(K(x1, x2)). Then, we consider
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the divisor

D = ((φ + ψ)(x1, y1)) − (φ(x1, x2)) − (ψ(x1, y1)) + (O) ∈ Div0
K(x1,y1)(E2)

Observe that this divisor is degree-0. By linearity of φ + ψ (recall: (φ + ψ)(f ) =
φ(f ) + ψ(f )), we invoke the previous proposition, i.e. conclude that D is principle.
Hence, D = Div(f ) for some f ∈ K(x1, y1)(E2). But E2 = K(x2, y2) for its Weierstrass
coordinates, i.e. f ∈ K(x1, y1, x2, y2).

We may now switch our view of f as a function on K(x2, y2)(E1), i.e. functions on E1 in
variables x2, y2.

f must be a function in (x2, y2) that, when having (x2, y2) = φ(x1, y1), yields a pole
(observe this in D). Similarly for ψ(x1, y1). When (φ + ψ)(x1, y1) = (x2, y2), we observe
a zero. Hence

D =
∑

P ∈(φ+ψ)−1(x2,y2)

(P ) −
∑

P ∈φ−1(x2,y2)

(Q) −
∑

P ∈ψ−1(x2,y2)

(R) + (O)

= (φ + ψ)∗(x2, y2) − φ∗(x2, y2) − ψ∗(x2, y2) + (O)

This divisor is still the same as before: in particular, it is equivalent to 0, and so

(φ + ψ)∗ = φ∗ + ψ∗

Finally, then

φ̂ + ψ = σ−1
1 ◦ (ψ + ψ)∗ ◦ σ2 = σ−1

1 ◦ (φ∗ + ψ∗) ◦ σ2

= σ−1
1 ◦ φ

∗ ◦ σ2 + σ−1
1 ◦ ψ

∗ ◦ σ2 = φ̂ + ψ̂
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appendix b

Fq finite field of size q = pr , for a prime p

An affine space of dimension n

Pn projective space of dimension n

K arbitrary field

K algebraic closure of K

K[x⃗] polynomial ring over x1, ..., xk
V affine variety

V /K variety defined over K

I(V ) ideal of polynomials vanishing on V

K[V ] the ring of polynomials K[x⃗] mod I(V )

K(V ) the function field of K[V ]
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gallery

Parallel edges
are removed
(e.g. 3-edge
from j = 0)

F31 F47

F71
also, the last prime for which all

supersingular curves are defined over Fp

dimethylcyclopentane

F157
odd hopscotch

F163
exploding box

F191
peppa the pig

F499
diamond

F811
crow’s beak

F2027
horseshoe crab
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